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ABSTRACT

The basic governing equations for the study of
problems of equilibrium and free vibration of shallow,
isotropic, spherical shells spinning about their polar
axis are derived from a variational principle. These
equations are specialized to the case of a spinning flat
membrane disk and the problem of transverse vibrations
is solved for the case of a fully clamped hub and the
case of a loosely clamped hub on an annular disk. The
method of approach for intermediate hub configurations
is also discussed.

The vibration analysis of shallow shells is approached
and it is noted that the spinning shell equilibrium
problem must be solved first to provide the necessary
stress and displacement distributions for the vibration
equations of motion. The equilibrium problem is treated
by linear theory for a freely spinning shell and by both
linear and nonlinear theory for the spinning shell with
a fully clamped hub. It is found that bending effects

are important, particularly for shells with a small



ratio of rise to thickness, and that a continuous
transition from the shell solution to the solution for
a spinning flat disk requires that bending be included.
The nonlinear effect of finite rotations. of shell
elements is found to be strong, and the effect increases
as the ratio of shell rise to shell thickness increases.
It is concluded that a nonlinear theory which includes
both membrane and bending effects should be employed for
the general analysis of the equilibrium configuration.
The equations of motion for small transverse
vibrations about the equilibrium configuration are
formulated and reduced to a form suitable for numerical

solution by an extension of a known method.
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NOTATION

: " g 111 —
bending stress "resultant", Brr —-tGﬁB , etc.
coefficients in recurrence relations
. e £t
bending stiffness, D = ———
12(1-v%)

Young's modulus
moment resultants
radius of curvature of shell

direct stress resultants

radial dependence of displacement components
hub radius in case of fully clampéd disk or
shell,inner annulus radius in case of loosely
or partially clamped disk

outer radius of disk or shell

hub radius in case of loosely or partially
clamped disk

mid-surface strains

radius of fully clamped region in case of
partially clamped disk

midsurface shear strain

shell rise

N-v

xi



a defined parameter in linear shallow shell

. _Rt
theory, A -.W

mass per unit volume

number of nodal circles

natural frequency of vibration

radial co-ordinate

number of nodal diameters

time. Also shell or disk thickness
components of displacement
non-dimensional radius

axial co-ordinate

defined parameter, Eq. (3.4.2) for fully
clamped disk, Eq. (4.4.2) for loosely
clamped disk

coefficients in recurrence relation

defined parameter, . -'ii't!f; wt Pt
E

defined parameter, Egq. (3.3.5) for fully
clamped disk, Eq. (4.2.7) for loosely clamped
disk. Also, S = l-{T:;:F in nonlinear
shell analysis.

hub to disk radius ratio in case of loosely
clamped hub

a non-dimensional independent variable

polar co-ordinate angle
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CHAPTER 1
INTRODUCTION

The purpose of this investigation is to formulate the
equations of static and dynamic equilibfium for shallow
spherical shells which are spinning about their polar axis,
and to obtain solutions for the static stress distributions
and free vibration natural frequencies and mode shapes for
several cases of shell curvature and hub configuration. The
shells considered in this analysis are assumed to conform
to the usual restrictions of shallow shell theory and in
addition are assumed to be isotropic. The static stress
analysis is formulated allowing for finite rotations, but
solutions are obtained both with this assumption and with
the assumption of infinitesimal rotations. The free vibra-
tion problem is formulated as one of small perturbations
about the static equilibrium configuration. Various aspects
of this general problem area have been treated in the
literature, however the upified formulation of the theory
and the solutions for the special cases presented here are
newv.

The necessity for the design of efficient, light-

weight structures for space applications has led to the
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consideration of centrifugally stabilized shells. 1In this
type of structure advantage is taken of the fact that the
static stress distribution in a shell spinning about its
polar axis essentially generates a pre-stressed configuration
which has a substantial resistence to deformation from the
equilibrium shape even though the material has practically

no inherent structural rigidity. In this way a shallow

shell, such as a radar dish, can be constructed of a flexible,
light-weight synthetic material and stabilized in shape by
spinning it about its axis of symmetry.

Various applications of centrifugally stabilized shell
structures have been proposed [1,2,3,4]. Included among
these are collectors for solar furnaces, radio and radar
antennas, solar sails, and drag modulation devices for re-
entry from space. All these proposed uses have in common
the necessity to provide a precise shell or disk geometry
in the presence of known or random disturbances with a
minimum of structural weight.

Initial interest in the solution of the vibration problems
of spinning disks, the limiting case of a spinning shallow
spherical shell, arose in connection with the design of
high speed rotating machine elements such as saw blades
and turbine disks. In general, a complete analysis of these
problems would require the consideration of the bending
stiffness of the disk material and the in~plane membrane

stresses due to centrifugal body forces. Early investigators
-2-



found that the solution of the general case posed consider-
able mathematical complexity and elected to study separately
the cases in which rotational effects were negligible and
the cases in which bending stiffness effects were over-
shadowed by rotational effects. Analysis of the situationé
in which bending stiffness is predominant led to a mathemat-
ical formulation for plate vibrations which was studied
initially by Kirchoff and which is presently developed to a
high degree.

The case in which rotational effects are of primary
importance led directly to the study of spinning membrane
disks. Lamb and Southwell [5,6] discuss the problem of
small transverse vibrations of a spinning circular membrane
which has no hole at the center and has a free outer edge.
This problem is shown to reduce to that of obtaining solutions
to the hypergeometric equation which are finite at two
singularities. The solutions are in the form of Jacobi
polynomials. Southwell [6] extends the analysis to the
study of the transverse vibrations of a spinning membrane
whose transverse deflections are constrained to be zero in
an interval r < a and whose outer edge is free. The central
clamping is such that radial displacements are unrestrained.
The solution to this problem necessitates finding hypergeometric
functions which vanish at r = a and are finite at the outer

edge. Simmonds [7] considers the same problem and points
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out that Southwell's paper contains an error since it over-
looks the fact that the hypergeometric equation cannot have
two independent solutions involving only terms containing
the hypergeometric series_zFl(a, B, Yy, X) 1f the parameter
v assumes integral values. Johnson [8] has also published
solutions to the same problem as part of his investigations
of the vibrations of shallow elastic membrane shells. His
results reflect the same error as Southwell's for non-
axially symmetric vibrations. Lamb and Southwell [5] use
their membrane analysis results, Kirchoff's non-rotating
results and Rayleigh's principle to approximate from below
and above the natural frequencies of free vibrations for a
spinning disk including both bending stiffness and rotational
effects.

The case when the central clamping is such that radial
displacement is completely or partially restrained is more
difficult to analyze. The restraint on radial displacement
gives rise to a more complex in-plane membrane stress
distribution. The resulting differential equation governing
the radial dependence of the vibration mode shapes is of
the Fuchsian type with four regular singular points. In
principal, this type of differential equation can be reduced
to a form studied by Heun [9]. However, as discussed in
the present analysis, it is more convenient not to make the

reduction in this case. It is found that solutions for the



radial mode shapes appear as power series whose coefficients
depend on a four term recurrence relation. Hence, the
problem with central clamping is correspondingly more diffi-
cult in the computational sense than is the problem without
central clamping. Solutions for the natural frequencies

of vibration for flat spinning membrane disks with several
hub configurations constitute a portion of the present
investigation.

Bulkeley and Savage [10] have studied the centrally
clamped membrane for the case of axisymmetric vibrations.
Their results are for various degrees of partial clamping
up to and including the fully clamped configuration.
Simmonds [11l] has studied the fully clamped case for axi-
symmetric vibrations. Both investigations find that while
the general vibrations are governed by an equation of
motion which reduces to Heun's equation, the axisymmetric
case reduces to the hypergeometric differential equation.

The most difficult boundary value problem for the
spinning membrane occurs if it is annular and hubless.

This case was studied by Eversman [12]. It is found in this
case that reduction of the radial mode shape differential
equation to Heun's equation is convenient. In this form,
two of the singularities of Heun's equation correspond to
the inner and outer edges of the annulus and the boundary

value problem is that of finding solutions which are finite



at two singular points. Eversman also found that the
axisymmetric vibrations of the annular membrane reduced

to the hypergeometric equation and that the case of one
nodal diameter reduced to a form of Heun's equation which
admits a polynomial solution. This was shown to correspond
to a rigid body precession mode.

Interest in static and dynamic problems of spinning
shells appears to be relatively recent. Explicit attention
to the equilibrium stress distribution in a shallow spherical
which is spinning about its polar axis was given minor
attention by Reissner [13] in his important paper which
presents solution techniques for the equations of shallow
spherical shell theory in the case of axisymmetric loading.
He gives a particular solution of the governing equations in
the case of the inertia load on a rotating shell. No attempt
is made to obtain a complete solution for various boundary
conditions. The shell equations used by Reissner are based
on the assumption of small displacements and rotations, a
condition which might not be met if the shell is spinning
rapidly or the stiffness of the shell material is low. A
subsequent paper by Reissner [14] based on nonlinear shell
and membrane theories of Marguerre [15], H., Reissner [16],
and Bromberg and Stoker [17] allows for the possibility
of finite rotations. A numerical integration scheme for

nonlinear two-point boundary value problems for shells of
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revolution has been presented by Archer [18]. As a limiting
case of the nonlinear shallow shell theory Simmonds [19]
obtains solutions for the transverse displacement of a
normally loaded spinning membrane disk.

Cohen [20,21] has solved the problem of the static
equilibrium configuration of a spinning paraboloidal dish.
His theory is based on a different set of governing linear
equations than is Reissner's and has the potential short-
coming that all boundary conditions cannot be satisfied
simultaneously.

The first investigator who specifically treated the
statics and dynamics of spinning shallow membrane shells
appears to have been Johnson [8]. His study is based on
Reissner's nonlinear shallow shell theory for the membrane
case. The vibration problem is considered to be one of
small perturbations about the equilibrium state assumed by
the spinning membrane shell. He finds that the equilibrium
state is easily calculated and is one in which there is no
meridional stress, independent of the curvature of the shell.
This observation is inconsistent since it is known in the
limiting case of a shallow shell which is a flat disk that
the radial stress does not vanish. A consistent theory
would show a continuous transition from the stress distri-
bution of a shallow shell to that of a flat disk. This

continuous transition is accounted for at the expense of
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a more complicated theory if bending effects are included.

A second inconsistency in the membrane theory is the
impossibility of satisfying certain boundary conditions,

even if the stress distribution is primarily of a membrane
type. As pointed out by Johnson, this difficulty is probably
not serious since a boundary layer analysis [14] would show
that bending effects are important only in the immediate
vicinity of the edge for shell geometries for which membrane
theory is nearly correct.

The general equations for equilibrium of rotationally
symmetric spinning membrane shells were formulated from a
variational principal by Simmonds [1]. He obtained the
equations in a form such that the problem of determining
the appropriate initial shell shape in the non-spinning state
in order to obtain a desired shell configuration in the
spinning state could be solved. As computational examples
he cites the cases of the flat disk, sphere, and paraboloid
with conical covering.

Other than Johnson's [8] investigations of the vibrations
of shallow membrane shells, there have apparently been no
published investigations of the free vibration characteristics
of spinning shallow spherical shells. There have been
numerous studies dealing with the free vibrations of
stationary shallow spherical shells. Reissner [22,23] and

Johnson and Reissner [24] neglect the effect of longitudinal
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inertia on the predominantly transverse vibrations of

shallow shells. When this is done, it is found, just as

in the static case, that the dynamic equations can be

reduced to two simultaneous equations for the displacement
and a stress function. Kalnins and Naghdi [25] extend the
idea to three different degrees of neglect of the effect

of longitudinal inertia. One of their forms of the equations
corresponds to those used by Johnson and Reissner.

The case of vibrations of the spinning shell is
significantly more complicated than the equivalent problem
for the non-spinning shell. Of major importance is the
fact that in the spinning case the equilibrium configuration,
about which wvibrations occur, is not a Zero stress state.
This pre-stressed condition gives rise to membrane restoring
forces in addition to those associated with the usual shell
theory. An additional complication arises because of the
Coriolis acceleration coupling between the components of
displacement which arises due to spin. Because of these
additional difficulties most of the solution techniques
available in the literature cannot be applied to the present
situation.

Numerical approaches to the free vibration eigenvalue
problem for spinning shells are required. Two distinct
methods appear'in the literature. In one method, most

recently reported by Zarghamee and Robinson [26], values
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for the natural frequency are assumed and the equations of
motion are integrated by a suitable technique to see if

the boundary conditions can be satisfied. If they -are not
satisfied, a new value is assumed for the natural frequency
and the process is repeated. The vanishing of a certain
determinant which is a continuous function of the assumed
frequency indicates the satisfaction of the boundary condi-
tions. An iterative process based on the value of this
determinant can be used to find the frequency at which it
vanishes. In the second method, due to Cohen [27], the
mode shape is iterated on and convergence is obtained when
the sequence of frequency estimates based on successive
mode estimates reaches a minimum. The former procedure is
an extension of Holzer's method and the latter an extension
of Stodola's method.

This research program deals with a broad range of
problems within the general framework of the study of the
static and dynamic characteristics of shallow spinning
shells. The general equations of static and dynamic
equilibrium are formulated from a variational principle.
The equations of motion for free vibrations are obtained in
terms of small perturbations about the equilibrium configura-
tion assumed by the spinning shell. It is shown that the
linear and nonlinear shallew shell theories of Reissner

correspond to the present equations in the static case.
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The spinning disk equations presented by Timoshenko and
Goodier [28] are the limiting case of these shallow shell
equations. The spinning membrane shell vibration equations
of Johnson [8] can be shown to be identical with the
vibration equations obtained in the present analysis. The
equations of motion for the transverse vibrations of
spinning membrane disks studied by Simmonds [7] and
Eversman [12] and the equations of motion for the in-plane
vibrations of spinning disks treated by Simmonds [29] are
special cases of the results obtained in this investigation.
Several digital computer routines have been written to
evaluate various aspects of the theory developed herein.
Three programs have been written to calculate the static
stress distribution in a spinning shallow shell. One program
is for the calculation of the stress distribution in a
freely spinning shell (no hub) using an analytically
developed solution to Reissner's linear equations. The other
two programs deal with the case of the shell with a fully
clamped hub. One utilizes Reissner's linear theory and the
other utilizes his nonlinear theory. These static stress
calculations were carried out and are reported here since
they must be available before a vibration analysis can be
carried out. Of particular theoretical interest is the
comparison of the linear and nonlinear theory and the

shell geometries for which a nonlinear theory must be used
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and those for which a linear theory is adequate. In addition,
the shell configurations for which a bending theory is
required and a membrane theory is inadequate are clearly
shown.

The results of Simmonds (7] and Eversman [12] for the
natural frequencies of free transverse vibrations of spinning
membrane disks have been extended in this investigation by
the computation of results for the case of an annular
membrane with a frictionless hub and for the most physically
significant case, that of a fully clamped, or "built~-in"
hub configuration. The intermediate case of partial clamping,
studied by Bulkeley and Savage [10] in the axisymmetric
case, 1is also discussed in the general case.

The equations of motion for the shell vibrations have
been formulated in a way appropriate for the determination
of the natural frequencies by the method of Zarghamee and
Robinson [26]. The procedure is much more complicated than
their analysis since the equilibrium stress and displacement
distribution must be computed prior to or during the
iteration scheme and appears as a variable coefficient in
the differential equations. No numerical results have been
obtained due to the limitations of available computational

equipment.
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CHAPTER 2

EQUATIONS OF MOTION

2.1 Preliminary Considerations

We will be interested in deriving the equations of
motion for the free vibrations of a shallow spherical shell
which is spinning about its axis of symmetry. It will be
assumed that the shell is isotropic and that the basic
assumptions inherent in Reissner's linear and nonlinear
theories [14,30] are valid. The vibrations will be considered
to be small perturbations about the equilibrium configura-
tion assumed by the shell when spinning. Since the
equilibrium configuration must be established before the
dynamic problem can be solved, the static and dynamic
problems will be formulated separately. The equilibrium

problem will be formulated allowing for finite rotations.

2.2 Axis System and Nomenclature

The axis system utilized in this analysis is identical
to the one used by Reissner [30]. As seen in Figure 1, the
equation describing the shallow spherical shell, measured

from the base plane, is
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z = (RZ-r* - (R-W) (2.2.1)

and the local slope is

r

2 — ~ .
O L

Q.
Al=

(2.2.2)

The approximation in Eg. (2.2.2) is the shallow shell

approximation based on the assumption that

) ?i ce |\

The basic shell equations will be formulated in terms
of displacements which are meridional, tangential, and
normal, as shown in Figure 2. This is the convention used
by Reissner in his linear theory [30]. In his nonlinear
theory he uses displacements which are radial, tangential,
and axial, as shown in Figure 3. The connection between
the two systems, within the scope of shallow shell theory,

is

(2.2.3)
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where the barred quantities refer to the system in which

the deflections are radial, tangential, and axial.

2.3 Static Equilibrium Equations

The equilibrium configuration for the spinning shell
is one of axial symmetry since the shell and load are both
axially symmetric. The following fundamental relations,
specialized for the axisymmetric case and consistent with

the theory of shallow isotropic shells [14,30,42], will be

used:

Strain-Displacement

2
€ =‘*r*—g+'—‘zu>p*§l(f

U-Q} ~ 5Ky (2.3.1)

m

L]

-~|&
*
¥

Stress—-Strain

Q:P - 1%%;1.\}i( + fWa;;l

T - '\_E_—'v'.','t.\_ee"' \l/é.(] . (2.3.2)
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Curvature Change-Displacement

Kr = - uwee

Vo = -+ O (2.3.3)

The co-ordinate g'which appears in the strain-displacement
relations is the distance from the mid-surface of the shell
to a shell element, measured outward along the local normal.

The strain energy of the deformed shell is given by

U-3 X“\_“cef +(\:eee°l(‘ drdeds (2.3.4)

If we write the strain-displacement expressions as

é( = €f+'{\(p

€c= 8o+ 3K, (2.3.5)

where e, and €q are mid-surface strains, we obtain for the

strain energy
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=

g = %XKS%1\€} rel+tvecey(rdrdedz
.‘..‘_.A“qz-\%@i\'\f:-\v \(‘: A\ \éf\('a’lf‘éféec\q

+ ‘—Z-X“Zé’ é’;:z\_ec\lr + eek‘eérz\l’(e‘.\ég»cen\(la‘l ¢drdedz  (2.3.6)

If we integrate on & and note that € r €51 K,r kg, being
mid-surface strains and curvature changes, are not

functions of%, we obtain

u = 1—%—\%;,&3 “\e} reZ+zVecge| rdrde

+ 2 &&\_\4;& *\({;-\-"L@\(‘r\(’g—lrdvég (2.3.7)

where

EY

D= \z(\-?‘)

and t is the shell thickness, assumed constant.
As shown in Figure 4,the inertia load of an element of

the shell is horizontal and given by

~-17-




Fy = w (e ue w’-‘é\tw drde

where m is the constant mass density of the shell and w is
the spin angular velocity. The corresponding potential

for the element is
\ T v \¢C
dV; = -3z wmw (c+ru~ w-‘g\ tvrdede

By combining the strain energy of the shell and the potential
energy of the load,the total potential energy of the shell

is given by

dlrt

[ Ereled » 2 veieced]
R L SRR A XL RV

(e ur o B fedrde @00

By introducing the strain-displacement relations and using
the principle of minimum potential energy we obtain the

variational problem
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o [[iedluc 2o pedl {4 4T
2flues R v €]+ Rled

+(RuTee? (e g rdde - 0

(2.3.9)

The Euler equations for this variational problem are [32]

:j—‘-;.(rwr\ ~Sg .»mu)"((wu-\-ub-%\r = O (2.3.10)

B 9% - e (0 T 0¢)

+—é(w¢wfg\— mw-‘{mu\-\b%\% = o (2.3.11)

where Q}_and G}aare the mid-surface stresses. The boundary
conditions to be satisfied will consist of the hub conditions

on some hub radius and the natural boundary conditions on

the free outer edge, which are
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Wep+ W u%f = o

S? (V—Lcﬁr\ = o

S o (2.3.12)

These conditions correspond respectively to the vanishing of
the bending moment, the Kirchoff condition, and the wvanishing

of the meridional stress at the free edge.

2.4 Reduction of the General Equations to Special Cases
A. The Spinning Flat Disk
In this case Eq. (2.3.10) is the only one applicable
since when R becomes infinite there is no transverse load.

Hence as WK-eoowe obtain

d
Te(T50) ~ ¥ g & v (Crw) = .41

which corresponds to the result obtained by Simmonds [29].

In the case when we assume
A
= L4\

we obtain
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d 2 2T
S (FS) -5 + WwW*r® = o (2.4.2)

which corresponds to the governing equation derived by

Timoshenko and Goodier [28]. Simmond's equations for the

finite deflection of a normally loaded spinning membrane
can be obtained from Egs. (2.4.2) and (2.3.10) by allowing
P9, 0O=0and replacing the inertia load in Eg. (2.3.11)

by a normal pressure- to obtain

g?(fq'r) -Ss + Mmwirt=0o

1 d
f(rse wy) = P (2.4.3)

B. The Linear Reissner Equations
The linear Reissner equations in the axisymmetric
case can be obtained by neglecting the non-linear term in
Eg. (2.3.11) which arises because of the inclusion of the

effects of finite rotations, and by assuming

i
Flus i)
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With these conditions we obtain

olo-

"E("W’v\ To * MWL = (2.4.4)

E) T
T VS + (S 4 Te) - wwb"'( - o (2.4.5)

Equation (2.4.5) corresponds to Reissner's Eg. (16) in the

axisymmetric case [30], with

et

= L

Equation (2.4.4) corresponds to Reissner's Equation (3a)

in the axisymmetric case with

10r = rwanlf‘

C. Reissner's Nonlinear Equations
Reissner's shallow shell equations which include
the effects of finite rotations [14] can be obtained from
the present theory by introducing a stress function and

deformation variable, and properly accounting for the
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transition from displacements in the meridional, tangential,
and normal directions, to displacements-in the radial,
tangential, and axial directions.

Prior to obtaining the equations of equilibrium, the
appropriate strain-displacement relations for the pertinent
type of displacements can be obtained from Egs. (2.3.1)

and the transformations of Egs. (2.2.3):

C
€c ™ Up- R W &+ T U

oy
€Co= ** T¥ (2.4.6)

Here we have not used the barred quantities to distinguish
the co-ordinate system.

Equation (2.3.10), with the assumption

\ <
—(w + W) L4\
{\( 23 (2.4.7)

is equivalent to Reissner's Eqg. (2.21). In the present

notation we have

S—c(rc}-\ - To + v WIECT = o
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This implies the existence of a stress function such that

\ & Wf = \\)
d
TS = —j% R et Lt ol

The differential equation which ¥Jsatisfies can be
obtained from the appropriate compatibility equation. It
is not difficult to verify that we must have for the mid-

surface strains [14]

By making use of the stress-strain relations
4 -
€c = ELSc - W‘e]

€o=E\| Vo - ¥ ¢ |

and the definition of the stress function we obtain

\ LN
T Wee + We = I 4 (@Yot + % w7 - 5 W=

If we introduce a displacement variable 4>such that

d
.__F.,_,_._\b
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there results

z
T\ W v - a2 _ @) mufr
E (18 C C T ¢ ¢ - =3
(2.4.8)
A second equation is obtained from Eg. (2.3.11) by

introducing the stress function and displacement variable

and employing the approximation of Eq. (2.4.7):
Ad 1B b C -
F3) Flode rae-2] Eoavl- o

Upon integration we obtain the second governing equation

T\ oo FoR{r k- -0

(2.4.9)
where the constant of integration has been shown to be zero
because of the free edge conditions.

It is of interest to note that Egs. (2.4.8) and (2.4.9)
require only four boundary conditions. The vertical edge
reaction at the outer edge is automatically satisfied and
no condition on W¥is required unless the displacement is
desired from a further integration of<b.

A second form of Egs. (2.,4.8) and (2.4.9) in terms of

stress resultants rather than stresses is
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Et * =y
oldes ¥-H]+ T -2 - o
where
PEor = PN 2 W
i = Nee"%‘% A ()@11‘1'
and

() =T MASS PR QUNVT  AREAR = mt

2.5 Equations of Motion for Small Free Vibrations About

the Equilibrium Configuration

The equations of motion for the free vibrations of the
spinning shallow spherical shell will be obtained by con-
sidering small perturbations about the equilibrium
configuration assumed by the spinning shell. The dynamic
theory will be based on the same assumptions as the static
theory with the exceptions that the perturbations will
have infinitesimal rotations and the possibility of asymmetric
motions will be included.

The fundamental relations to be used are the following:
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Strain-Displacement

é{‘:u(*‘-ﬁ"' b&z-\-:‘( ‘-'-E(-!-C"d(.

| L Be\k
€o = %* %-" + % v ?e) +<k‘é-_ea-\-§\le

= Ye &, Wiwe -
So= 7 *V¢-% + 2+ TWeo= Frot SKro
(2.5.1)
Stress-Strain
E
= -\—_"\;sz\_é.r > \Pea-k
q@ - \ - \P'z\_ee'\'eé.f]
ne ©
it 2(14¥) (2.5.2)
Curvature Change-Displacement
W4~ T Wer
\ \
‘ée = - F W - T Wee
(2.5.3)

X
0

f
ﬁ
/\
|-
s
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The strain energy of the deformed shell is
\
- y— O
0 - [[[i et cca reatod rdede d
In terms of strains alone this becomes

us S “ {\—"f-;,,_\e;‘ +eZ ATV E |+ C‘r‘é'}e?f drdadz

In the static case the inertia load entered the
formulation as an equivalent applied load and hence as
a contributor to the total shell potential energy. In the
dynamic case the inertia load appears naturally in the
kinetic energy and should not be considered separately. By
following the development in the static equilibrium case

we obtain for the total potential energy
e
V- [l (er a2 vevece, vag)
D \ \ Z \ \
¢ B o+ (e wp +redp g 2 Pl H e eSue)

e e eod[ {1 rdede

(2.5.4)
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where €.r Cgr T, qa¥C the strains in the shell mid-surface.
To obtain the kinetic energy we must derive the
expressions for fhe absolute velocity components of a shell
element. In an axis system fixed to the shell and oriented
with axes in the local meridional, tangential, and normal

directions the velocity of a shell element relative to the

shell is
VQ = &C‘P +‘\)"Ce -\-u_}'e(\

where éq, 59, ér are unit vectors in the meridional,
tangential, and radial directions, respectively. The

angular velocity, in the same axis system is
D= —wL & 4+ e
@ = g ¢ t WECyr

where the shallow shell approximation has been used in

resolving the components. The position vector of a dis-

placed mass element is

—

s = W8 + &g + NEp

and the velocity of the origin of the axis system (coincides

with the undeformed element) is

\Io = rw ey

-29~




The absolute velocity of an element is

oty

L+ Vo4 Bxs

which yields

V= (G-wo) o+ 0 +(rru+rudLyw] &

r(dy - 0Ew) &,
(2.5.5)

The kinetic energy of the deforming shell is then written

T & [l wsT 416 slerur wfy ol
s - oLl {rdrde
(2.5.6)

The governing equations of motion are obtained from

Hamilton's principle:

t
Sg (T-V)dt = o
tl
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By replacing e r Sgr and Ire in Egq. (2.5.4) by th:
definitions from Egs. (2.5.1), we obtain for the -

problem

° S“"m\\‘“’ vl A O (e utwB) w—lz +\_d} ;

* (v s Jf-z“’ée)z + 20 Wi % + Wae)

22 2 Crwel [ edrdedt = o
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The -shell displacements will be taken in the form
ro+) r) +u¥(r 04
ulr, e, o( u£Lr, 8,

‘0‘((‘,9,‘1) = U'*(F)QJ%)
(r,et) = I (r) +w(r et)

Where uo((‘), u&o(r) are the shell displacements in the
equilibrium configuration of spin about the shell axis and
u*, v*,8-* are assumed to be small perturbations about the
equilibrium position. If these expressions for u, v, and
ud-are inserted into Eq. (2.5.7) and the result is

rearranged slightly to group terms involving the equilibrium

displacements, we obtain

${[[[Lonesle vuor 8T - Erf L Zvpesns T
e+ BT s oo kil Y+ 21
R O i e S POV

e [[[T{loruorar ol 3% (w51l

¥
'“"'th *‘B‘ + 2 g || e O + U+ utzg o7 ]
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By replacing e r Sgr and Ire in Eq. (2.5.4) by their
definitions from Egs. (2.5.1), we obtain for the variational

problem

3| P L e o

+ L%P‘.i%("?weﬂz?] cdrdedt = o

(2.5.7)
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The -shell displacements will be taken in the form

u(r, G,-L) = Y (r) + u*((‘,e,{)
w(red) = v¥(red)
w(r,6t) = Sr) +w¥(r,e1t)

Wheret{J?L u%lr) are the shell displacements in the
equilibrium configuration of spin about the shell axis and
u*, v¥*,(8* are assumed to be small perturbations about the
equilibrium position. If these expressions for u, v, and
ud-are inserted into Eg. (2.5.7) and the result is

rearranged slightly to group terms involving the equilibrium

displacements, we obtain

o[l vaov T —f Lt ot T
Xu +-—§ +z\r>\\ko(+”5°+ u%A\_—ﬁ ‘;—ﬂ

-] e (e Bt [T edrdad

¥
|-v"‘-3\"{ *®+1“}w11”56c“}r + U+ %*li@(ﬂ
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el ([ Tmfles - gl [ oo om(iteag)d |

¥
Bl e b T ST

-\-'C.V)\'\_k’}f & %i US'OrU&r“"-LZUB%{Z][ﬁ‘ u'x'_‘_ ?"‘-‘_—:Z_( US’G 1}

le ¥ % ¥ D 4
-G{Lofe 48 Oy Dilertede( _ G f ¥
+( ruJ'r -l-"’*zug'ge) + 2V Sy (,n Us‘r + r‘< “9‘993

2 2w u&;‘ﬂzﬂ rArolecH}= o
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By referring to Eg. (2.3.9), which defines the
equilibrium configuration, and by using the fact that the
processes of variation and integration can be interchanged,
it is noted that the variation of the first integral in
Eg. (2.5.8) vanishes. To interpret the second integral
term in the variation we note that the strain-displacement

relations of Egs. (2.5.1) become

o , & o ur, .M W2 =, 0¥ *
g ¢ 4--;—{—:’72"4-74- =+ ( u.‘)r rzu%g

o = __*+ o - .Q' (U%r:u9?¥)wg _,Zq-g?(-'f,-u}:)

We note that the strains can be broken down into the sum

of equilibrium strains and perturbation strains
= *
€}~-—€;P° + Ep

éé;'= é@ao +'€€§

where, as previously defined, the equilibrium strains are

H

Crp= Uop+ B0 vl 8T - Tuorr
éec (\ + US‘O <' “S'Or‘

The perturbation stralns, defined as the additional strains
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w

due to perturbation of the shell from_its equilibrium

configuration, are

* ¥ €, | z ¥
é}; = Up + @ 0t u}qﬂu}? '+=E¢A¥f —-ég'aj?r

The second integral term can then be written

Z5 ”fl miw\m U o™ ofé][ OF 4 (u*+ us»*-é—)wﬂ

et + o] Sl a4 bl vl

!
+?“u9a,-):'"Fu9f+?"-‘cu9§; + ¥ uf }rdrolecl-k

This is recognized as a variation problem involving the
equilibrium loads and stresses acting on the perturbation
strains and displacements. As such, the variation must

vanish. Hence, the variation problem reduces to
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vz luf 2 oquttek o 2N ()

- GILuf  H - wé“(us»o;wr*)]?f -2l wr”®

(T rmats)® F Ty wnd (F W us

+ ‘-Z;_f‘_'zg;(";? u%*)]—zf] rdrdedt =0

The Euler equations for this variational problem are [32]

*
Ze(rs@) -5 + 25O = onr [0* 2o 95 (uf FE)u |

(2.5.9)

*. -®
F(r18) +33° + Wb = e Bz (ats ¥ L) - v¥w? ]

(2.5.10)
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'.Z‘V"Vzgj-*—-";'- {r‘%‘(- Wy, + r Sy, u.9';-¥§

2.

A A !
-7 —ae? e We,u.‘)é* + u%,’i“r;f + 'é(Q‘r*-l- G‘g*)

= - 03¥ — 2w 0L 5 - (U¥+ wfl)w?

(2.5.11)
whereQ;:*, SLx, '7;‘; are mid—surfa.ce perturbation stresses and
where, in Eg. (2.5.10), the shallow shell approximation
E?<< | , was used. The boundary conditions for this set of
partial differential equations will consist of the hub
conditions at the hub radius and the free edge conditions
at the outer edge of the disk. The dynamic boundary condi-

tions are the same as static boundary conditions and are

r-a-
ula) =o
w(a) =o
wWw(a) =o
w(a) =0
r=hb %

=2 =V 2 _.-a"cb-

Se(bk) = o
“’r‘e(bw = O
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Wheréfkais the hub radius andfsbis the shell outer radius.

In terms of the perturbation quantities these become:

r=3:
u¥@) = @) = ) = o
wWH¥(g) = ©

N %

!
¥+ V(T ¥ + e W% /r=b = o
D 7 [=V A 1§ZLJ¢
SV + 5 (7 ’-5"52)/,--;5 = o
- ¥
Se(k) = T (k) = ©

It should be noted that the displacements are referred
to the unstressed configuration and hence the perturbation
quantities are in directions established by the shape of
the shell before it is spun. Simmonds [l1] has circumvented
this problem to some degree by establishing an intermediate
reference frame associated with the shell equilibrium
configuration and perturbations can be referred to this
system., For vibration problems of shallow shells it is not

felt that this refinement is justified.

2.6 Reduction of the Differential Equations for Special
Cases

A, The Transverse Vibrations of a Flat Spinning
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Circular Plate
In this case the radius of curvature is infinite
and the equilibrium deflection in the normal, or transverse,

direction vanishes. Equation (2.5.11) decouples from

(2.5.9) and (2.5.10) and becomes

Egs.
O ) ce ¥
TVt - 55 (S, 08) - TS ) = -
(2.6.1)

The boundary conditions are

ws¥ ()

Wi (3) =0

L !
UB’(#“‘\P((‘U}"'*-"'FL%';),rzb:O

[% (<t US)*- ‘_;"\f g‘r ('Lf %:)]Ir—. -

In-Plane Vibrations of a Flat Spinning Circular Plate

B.
in the case of a flat plate the

As noted in (34),
In this case,

transverse and in-plane vibrations decouple.
the in-plane vibrations

with the radius of curvature infinite,

are governed by Egs. (2.5.9) and (2.5.10)
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,or(m-r) g X +'°T - mrl G*—zwé—*—q"‘_uf]

(2.6.2)

(2.6.3)
with boundary conditions

in the clamped hub case

u¥a3) = o
V@) =o
IH(k) =o
Teg(b) =0

This problewm corresponds to the one studied by Simmonds
[29].

C. The Transverse Vibrations of a Flat Spinning
Membrane Disk

In the case of a membrane disk the bending stiffness
vanishes, so that D/t

. We will thus have
12 ¥\ , L2 /T "
r’Df(rG‘f‘o‘*}? "'r“ae( o, ) = v

\.):3-'*

(2.6.4)
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which is the governing differential equaﬁion for the studies
of several authors [5,6,7,10,11,127.

In this case the boundary conditions are different than
for the case of the plate because of the vanishing of the
bending stiffness, and hence the bending moment. At the hub
radius only the transverse displacement can be set to zero,
while at the outer edge only the requirement of the finiteness

of the deflection can be imposed. Hence we will have

Wa) =<
& (k) = FINITE

D. The Vibrations of a Spinning Shallow Spherical
Membrane Shell
In the membrane shell theory, the bending stiffness

vanishes so that Egs. (2.5.9), (2.5.10), and (2.5.11) become

>*
r(ra®) - + 2U0 o e UG ¥z OF-(uF+oG) oF |

(2.6.5)

¥* .
Sere)+ 341 = e $ e %) - 0]

(2.6.6)
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T%{r‘m W + 1S, w;!‘{ +7 Q{ngcusg‘-m%m;‘f

*%(Tr*-m':) = ML,& -~ T H —-—(u +uy ,?)w" ]
(2.6.7)

These equations can be shown to be equivalent to those
derived by Johnson [8] and solved for some special cases.
This equivalence can be established by noting that Johnson
utilizes displacements which are axial, radial, and
tangential, whereas the present analysis uses normal,
meridional, and tangential displacements. Within the shallow
shell approximation the relationship between the two

displacement systems is

g v
- r
W = o&—u% N w
(2.6.8)

Furthermore, to the same order of approximation, the stresses
Sy and ’\"fe are considered to be representative of either the
mid-surface or "horizontal" stresses.

It can be seen that Eq. (2.6.6) becomes
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#(r r Yo ) °+"r,-.e = et U*-l"ZuJC( —0*0.)"]

2
-1
(2.6.9)
Equation (2.6.5) can be used to show that
(4
S¥+Te 1L 2L ) Lfa’*re Ll ¢ 3
= -.-_"F—a((gq} +Q —ZoR¥ "'(LI*P&#‘E)LO]
(2.6.10)
(2.6.9), Eq. (2.6.7) can be written

By using Eq.

L*S"' 2
(2.6.11)

The shallow shell relations of Egs. (2.6.8) can be

employed to yield
¥ e 8¢
Faelr(-% + Wpe) §7 + T &7, e r*ae‘_“fz“’}) r%o‘%]
= o ¥
(2.6.12)

An equation for dynamic equilibrium in the horizontal
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direction is obtained by resolving Eqs. (2.6.5) and (2.6.7)
in the horizontal direction and utilizing the shallow shell
approximation thatq—'9 and ’}-‘(9 are taken as the horizontal

stresses. Following this procedure we obtain_

12 ¥ i N ey os
ror(rs¥) - e 4+~ ;{m = m\_(u*«-w*gp)

—2zw 05 - (u* + od-*-,-g) w [
(2.6.13)

where it has been assumed that

L‘LLI
&
Again, employing Egs. (2.6.8) we obtain

o, >N L3 EV2 - -
—ar( (’Gr!‘) "Te* + 'a"ée = v (U7 -z EX- q*_wz:(
(2.6.14)

In summary, for the case of displacements in the axial,
radial, and tangential directions, we have, in the membrane

case

Fe(rad) -+ 580 = vl oo $¥ - A

(2.6.15)
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@r<r'rrg )+ % —N_e + Tl = m{‘\_ #7200 O ¥ - v¥ur]

(2.6.16)
*elelR Ba) o 4 o]
_16‘_(‘_2""’351‘) 'ﬁ‘: +J5We°;}:] N mris.* (2.6.17)

Equations (2.6.15), (2.6.16), and (2.6.17) are identical
to Johnson's equations specialized to the case of a spherical
shell,

To supplement Egs. (2.6.15), (2.6.16) and (2.6.17) it
is necessary to give the mid-surface strain-displacement
relations for the perturbation quantities. We previously
have stated these relations for the axis system which is

meridional, tangential, and normal. They were

¥ (4
€X - uX+ -‘% + U 0¥ + g ¥
Y3 A u9-¥ L w2\
é§=79+? * + %(%°)
* X oS, 4+ ¥
. u ¥_ ot WF ¥
= B84 uX - e ((R1EF) )

If we make the transition of co-ordinates given by
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Egs. (2.6.3) these become in the radial, tangential, and

axial directions

=¥ _ ¥,/ = ry %, L x?
€pr T Up +( op~ "é) r + T W

- % L = e B
L i Y

(2.6.18)

In the case that bending is considered we can obtain
a set of equations of motion for the radial, tangential,
and axial axis system by including the bending term in
Eg. (2.6.17) since within the scope of shallow shell theory
it is unaltered., Hence, in addition to Egs. (2.6.15) and

(2.6.16) we will have

— 2 _C ~ —-—
vt O --lrrg-r' ir(—z J-US’W)W* + (‘Wpowp*Z
1= Y.L = ¥ Lo m*7 - =3 ¥
- r"-oei('ﬁ +°‘%r)frf‘e+ r “"90‘5'9; == W
(2.6.19)

The vibration equations in the form of Egs. (2.6.15),

(2.6.16), and (2.6.19) have the advantage that the orienta-
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tion of the axis system is not tied to the initial shell

shape.

2.7 Equations for Computation of Bending Moments

It has already been noted that the vanishing of the
bending moment Nﬂq-arises as one of the natural boundéry
conditions at the free edge of the spinning shell. However,
it has been felt appropriate to give here expressions for
the bending and twisting moments in the shell since they
do not arise naturally in the course of variational
development.

By appropriate integrations of the strain displacement
relations of Egs. (2.5.1l) we obtain the moment resultants

(moment per unit length)

Mer
Mg

"C>{L0?r'+\RC%:UE~+1%2u}b9)}

—Di% S, 4-'('7109'99 + \Pu&ﬂ;

M(\g = - (\—V’) D%(_;‘. US'G)

(2.7.1)

In the case of axisymmetric deformations these reduce to
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CHAPTER 3

THE TRANSVERSE VIBRATIONS OF A SPINNING

MEMBRANE DISK WITH A FULLY CLAMPED HUB
3.1 Introduction

As pointed out in Chapter 2, the general equations for

the free vibrations of spinning shallow spherical shells
contain as a special case, when the shell curvature is
zero, the equations of motion for the vibrations of a flat
membrane disk. It is found that the transverse vibrations
are uncoupled from the in-plane vibrations. The case of in-
plane vibrations was studied in detail by Simmonds [29].
Lamb and Southwell [5], Southwell [6], Simmonds {7, 11],
Johnson [8], Bulkeley and Savage [10], and Eversman [12],
have investigated the transverse vibrations of spinning
membrane disks for several hub configurations and symmetry
conditions. None of these authors has presented results
for the case of general vibrations of a disk which has a hub
configuration of significance for applications, as discussed
in Chapter 1. It is the purpose of the next two chapters
to study the transverse vibrations of spinning membrane
disks which have hubs which provide various degrees of

central clamping. Two cases are studied in detail. The
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case to be considered in this chapter corresponds to the
case of a fully clamped, or built in, hub which constrains
both vertical and radial displacements of the disk. The
case to be considered in Chapter 4 is that of a "loosely
clamped" hub which prevents vertical displacement but
allows radial displacement. These two hub configurations
are the extreme cases of physically significant hub
possibilities. The intermediate hub configurations have
been studied for axisymmetric vibrations by Bulkeley and
Savage [10] and their results are used to formulate the
equations for these hub conditions for the asymmetric case
at the end of Chapter 4. The hub configurations are shown

in Figure 5.

3.2 The Equilibrium Stress Distribution

The hub-disk configuration to be analyzed is shown in
Figure 6. The differential equation which governs the
equilibrium stress distribution in a spinning disk was
obtained as a special case of the spinning shallow spherical
shell. It is given by Eq. (2.4.2) and is repeated here for

convenience

E%FR(VWK}) - Sg + wWirt = o

(3.2.1)
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In the case of the fully clamped hub the boundary conditions

to be satisfied are

u(a)

Se(b) =

where ¢ »3 is the hub radius and r:bis the disk radius.

Solutions for the equilibrium displacement and stress

distributions are in the form [28]

C{‘+ (—!———)muu

(3.2.2)

S ~.‘—%zi(\+v°)c,+(: )C“ (H‘-‘%I’é“VJ) ujz'(‘z}

(3.2.3)

So = SN, -(-NF -GN, e

SE
(3.2.4)

The boundary conditions lead to two simultaneous equations

for the constants Cl and C2
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(3.2.5)

2
(1+v)C, - (l—v’)% = (Ete\fé'—v)) Wt
(3.2.6)

By solving Egs. (3.2.5) and (3.2.6) we find for C, and C

1 2

C, = BRI iz (=) az\(!w’)az—(%w’)ﬂz]f

' 8= GEw)° lardeat-v)at
(3.2.7)
O = Q=PI g0 QIS - (24
t 3e G+ )b+ (1-v)a*
(3.2.8)
For the equilibrium stresses we thus have
Al
IS = /4!& bﬂ-fz ,JZ_+
7 ¢ X b%) (
3.2.9)

-52~



S~ E)-E -2 - ey

S = <t T
(3.2.10)
where
(129) otk [(zw) b2 -(1-v)J* ]
2 G+PIBZ+(-vatd 0,
3+ v
./941 = —?Z: w UJZ
(3.2.12)
1 +2 2
/‘{3 = > ™M ed
(3.2.13)

3.3 The Governing Differential Equation for Free Vibrations
The partial differential equation which governs the
transverse vibrations of a spinning membrane disk is given

by Eg. (2.6.4) and is repeated here
L2 fad) d 2 (2 2%
fef["“?"ar “'r‘l'ae(“'é d3e) " Mot T°
(3.3.1)
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Where T and q:é are the equilibrium stress distributions
~given by Egs. (3.2.9) and (3.2.10). The boundary conditions

to be satisfied for the fully clamped hub are

&la) = o

(49’(.'0) = Fuovare

Hence we seek solutions of Eg. (3.3.1) which vanish at the
hub and are finite at the outer edge.

We assume a solution of the form
U}'C"; Q,é) = W("') <Sin S6 S\r\-p'll

which, when substituted in Eqg. (3.3.1l), yields the following

ordinary differential equation for VV(r)

2
7"‘0%"({'(‘7‘3“%/) *(7\7'-%——".3-9) W = o
(3.3.2)

where

152 - J&E;

It is convenient to partially non-dimensionalize Eq. (3.3.2)

by introducing the non-dimensional radius (7 defined by
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If we introduce this into Eqs. (3.2.9) and (3.2.10) for

the stresses we obtain

= b/‘("(l z)(pz+82)

(3.3.3)

_ ¢ z 3y 4

Se = S (-8~ W Y
(3.3.4)

where
7. <2 _ -V /q (2+WLE -(14+ VWS¢
° ety 3"""’( )—L\v(l-l-v’)lo'z-%-(n—v’Ta'LI

(3.3.5)

With the introduction of the non-dimensional radius and

Egs. (3.3.3) and (3.3.4) into Eg. (3.3.2) there results

'l%é/’-lﬂ (,./,zxp‘c,,gz) { +:§$ ) -0 -/7"]{ W=e
(3.3.6)
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Further simplification can be obtained by introducing the

change of variable

% =t

and the definition

A1V o = [P, (1437 ‘-(
ot T dy Y™ 3+v’\.(w>+ 2 s

to obtain

K- )X+ 69 S g x’f- +)o—1- &Z)x] {[(l 81) S ,azva«/ =0

(3.3.7)

In this form the boundary conditions to be satisfied are
w (R
L)
W(l) = FiNvre

(3.3.8)

3.4 Solutions of the Differential Equation

The basic differential equation for the radial dependence
of the vibration mode shapes is given by Eq. (3.3.7) and
supplemented by Egs. (3.3.8) for the boundary conditions.
Equation (3.3.7) is of the Fuchsian type with four regular
singular points at x=0, x=1, x=-$2 and x=900. It can be
reduced by an appropriate transformation of the dependent

variable to Heun's equation [32]. In the particular case
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at hand,. direct reduction to Heun's equation, at least
by conventional means, does not appear practical since it

involves a transformation of the form

W) = Yk'&(x) |
in which k is complex for vibration modes with more than
one nodal diameter, Another transformation which will
lead to Heun's equation has been used by Eversman [12] in
the case of the annular membrane with free edges. In this

approach the transformation
\
= =%
is made and then a transformation of the form

W(g) = :k%(@

This reduction is successful in that Heun's equation can be
obtained with real values of k. However, the transformed
geometry of the singular points must be considered. After
the change of independent variables there will be singular
points at {30, &=l , g.-‘/st , and <'°° . The region
of physical interest lies between $ =1l and 43(‘9/332' .
Since the distance between §=(§’a\2 and &=\ is less than
1l only if C‘Va)z< Z , and since series solutions about & =\
can be guaranteed to converge only for o<&<?2Z , only

certain disk geometries can be conveniently treated.
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Because of these observations and restrictions, no further
reduction of the basic differential equation is made.

Solutions to Eg. (3.3.8) can be obtained in the form
of a power series expansion about one of the singular
points [33]. The singular point at the free edge is the
only one about which an expansion can be made which can be
proved to converge for the entire physical region for any
disk geometry. Hence it is appropriate to shift this

point to the origin with the transformation

€ = - o?(x-1)

(3.4.1)

where

\

oA =TT

(3.4.2)

With this transformation the singular point geometry changes

as follows:

Y= | - g O
Ko € = € a1+ 5

'x =T =>»> <:'=cxz
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T
The hub radius, originally at Y = (%\ , transforms to ('_-l l.

The differential equation transforms to

el2-otae (e T +(=-ort] € 4 [g-aius] [o

+z‘;{[— o?(1- ) - A ]SE - er?(-at) f W= o

(3.4.3)
and the boundary conditions become
W(o) = FINVTE
wQ) = © (3.4.4)
Solutions to Eg. (3.4.3) are sought in the form
W&~ 2 Cag ™
nN:o (3.4.5)

If we introduce the definitiorns



A = (n X 4p-1) +Z(n4p) - /%z

B = o] Xmspleep-) (48X map)- 24 550- 91
¥ = Y332 N i mtpodt (b2 mep)4](1-28Y) 52 ] (
§ = -or°(145% n o)’

it is found that the unknown coefficients, C,, are defined

by the recurrence relations

§C = o

x(oco"’ S,C, O
(3°C°+ r.c' + Soz_cz Q

qn-zcn-?. */gn-ocn-: + K‘ncn + gnﬂcnﬂ =Q; N2z
The first of these relations is the indicial equation. For

arbitrary C, it follows that

S, o

o

o - O{Q’(H-Sz)ﬂz = o
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This yields the two indicial exponents of the solution

£, =o

(3.4.96)

with the C, defined by

¥,C,+§5C = o

ﬁoco + K(‘ C' + Sth T o

; nz?Z

qn-'z Cﬂ-‘l. + ﬂﬂ-lcﬂ"l + 8’\r\C\V\ + gv\-HCV\-H =Q

(3.4.7)

where
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T
V'\(V\-\-\) - /2”“

-o(zi(3+67') a(n-1) +(s+5Yn - T 2?52 (1- ’Sz)]{

¥

B
8.~ ot Jave) n(nn) 4 a2y el 028y <- o]

& = -ae(1+&)nt
n ( AL (3.4.8)

Since the characteristic exponents of the solution are

repeated, only one solution of the above form exists. The
second independent solution is known to have a logarithmic
singularity at & = [33] and is discarded to satisfy the

boundary condition at that point.

3.5 The Eigenvalue Problem

The boundary condition of finiteness atZ =0 is
satisfied by the solution given by Egs. (3.4.6), (3.4.7)
and (3.4.8). The eigenvalue problem is that of finding
values of the parameter/d(z, and hence the natural frequency
42 , for which a solution of this form will satisfy the
boundary condition W(1)=o with Co, not zero. By noting

that qmﬁn and K‘n are functions of /6(2 we conclude that
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(3r| * Clqc/llz)

Hence the eigenvalue equation is

W) = z Cn(//‘) = o

no

(3.5.1)

and we seek to fFind the zeroes of the transcendental function

oo
-}
(D = 2, C,.¢uV
N=o
(3.5.2)
3.6 Numerical Evaluation of the Eigenvalues

A digital computer program has been written to find

the roots of the eigenvalue equation

F(?) = o

(3.6.1)
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The method employed consists of evaluating ‘:(/4‘() for a
seqguence of.va.luesof/t.(z until a change in sign is

noted. When the change of sign occurs, and the presence of
a root is thus indicated, an iteration procedure based on
the method of secants [34] is employed to obtain the
eigenvalue. This procedure is carried out for a given
number of nodal diameters s and for as many values of S in
os(a/b)é { as specified. For specific values of s and
(g) any number of roots can be calculated, beginning with
the smallest and proceeding in ascending order.

After a particular eigenvalue is obtained, the eigen-
function can be evaluated, by program option, by evaluating
the solution for the known eigenvalue,A(z, at as many points
in the interval o4 &< [ , or g¢ré lb , as necessary for
definition.

The above numerical technique was programmed for the
IBM 1620 Digital Computer at Wichita State University. It
was found that accuracy and convergence of the iteration
scheme could not be maintained without the use of double
precision arithmetic. This, coupled with the inherent
complexity of the evaluation and iteration calculations, led
to computational times per root which were impractical for
production computation on the 1620. Through the kind
cooperation of the IBM representative access was made

available to an IBM 360, Model 65, as well as a Model 75,
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for the purpose of completing the numerical work. Computa-
tion times on these machines were only a few seconds per

root.

3.7 The Special Case of Symmetric Vibrations
In the special case of symmetric vibrations the

parameter S = © and Egq. (3.3.7) reduces to

ey L e - £ - o

(3.7.1)

where

e ;L\
= ae(5s)

(3.7.2)

If the transformation

\ ~ X

g = i

is introduced into Eq. (3.7.1) there results the differential

equation
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g W X
() 3 + 1152 - E)w - o

(3.7.3)
with the boundary conditions
W(e) = ¥imite
W]
Ve T (3.7.4)

The mathematical problem specified by Egs. (3.7.3) and
(3.7.4) was studied by Simmonds [11l] in his investigations
of this case.

It is found in this case that there exists one solution

of the form
OO' "
w(z) = L C. ¢
Nzo
(3.7.5)

where the Clﬂare defined by
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0 - v ) - "(Z/A. Cw
i Cwn )

(3.7.6)

The second solution is logarithmically singular at & » o
and is excluded to satisfy the boundary condition at that
point.

The eigenvalue problem is that of determining'/tlz such

that

G e = ZC (/“z)[ |+8’- ]‘" Rl

(3.7.7)

so that the second boundary condition is satisfied. As a
means of verifying the results of the general eigenvalue
problem specified by Eg. (3.6.1), a digital computer program
for the special case of symmetric vibrations was develo ped.
This program utilized an iteration technique similar to the
one discussed in Section (3.6) and was based on the eigen-

value problem specified by Eqg. (3.7.7). The results of

-67-



these calculations showed good correlation with Simmonds'
results and agreed perfectly with the results for the case

< -« o from the general problem.

3.8 The Special Case With One Nodal Diameter

In order to further verify the analysis it was decided
to also treat independently the case of vibrations with one
nodal diameter. 1In this case we have € x\ and the governing

differential equation for the radial mode shapes is

W Jdw
Xx-1x+8%) E!J‘;z et -(-8)x] Ty

(4
+-‘5,{1(:-S‘) —-S";I vaZX(w - o
(3.8.1)

where

ot = =AY ]

(3.8.2)

In this case it is convenient to simplify the differential

equation by introduction of the change of variable
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WG = X y(x)

(3.8.3)

With this substitution Eg. (3.8.1l) becomes

X(x-1 Y+ 8 %z + {(x-lxuﬁz) +x(x-1)+ x(x+81)fd—))-:

\
-\-4(3-,«1))(‘/ = O
(3.8.4)
Equation (3.8.4) is a form of Heun's Differential Equation
{35].
As in previous cases, it is convenient to expand the

solution about the point X= | . This point is shifted to

the origin by the transformation

X -1
<~ BaEo = -t
(3.8.5)
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The differential equation becomes

¢(g-o e ] T
+118-or(+ 8] + (g-o) + (g-ord < - (18]

+ (3= A Z-a)Y = o
(3.8.6)

and the corresponding boundary conditions, deduced from

Egs. (3.4.4), are

‘Y(o\ = Finvre

Yoy = ©
(3.8.7)
One solution to Eg. (3.8.6) exists in the form
©0
Y (&)~ 2 Cag™
g
(3.8.8)
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where the recurrence relation for the Cn is

¥.C, +3C = o

O(V\-\'CV\-\ "'@“Cn + \“V\-\-tcn-&\ - 9

(3.8.9)

and

d,, = n( na) *-%;(ﬁ53A715
A, =~- Ol‘\_(?. +85) w(vn-t) + (A4S ) v 4 ":(‘s-/a")]

¥ = O (1482) 7

(3.8.10)

A second solution exists which is logarithmically singular
at L«a. The boundary condition of finiteness at the
origin requires that this solution be discarded.

At this point it is interesting to note the simplifi-
cation introduced by the transformation to Heun's Eguation.
The recurrence relation given by Egs. (3.8.9) contains only
three terms, but it would have contained four terms if the
transformation had not been accomplished. A similar result
would have been observed in the general case, but as
previously noted, other difficulties precluded the transfor-

mation.
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In this case the eigenvalue problem is one of

determining /Hz such that

Heun) = 2, Co(u® = o
(3.8.11)

The roots of this transcendental equation were found by a
method similar to the ones employed for the symmetric and
general cases. The results were compared with those
obtained from the general program for the case S= ] and

were found to be in complete agreement.

3.9 Results

The numerical procedures discussed in the previous
section were used to calculate the first four eigenvalues,
=0 to =D, for cases of from zero to three nodal diameters,
S=0oto 23 . The results of these calculations are plotted
in Fig. 7 as a function of the ratio of the hub radius to
the disk radius.

The general trend is for the increase of‘/Vz, and
hence the vibration frequency, with an increase in the hub
size. This is reasonable from a physical viewpoint since
increasing the hub radius would appear to stiffen the
system.

An exception to this observation occurs for the higher

modes corresponding to a given number of nodal circles n.
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It is observed, for example, that for \®*o and $*2 and D
that there is an initial reduction oflﬂwz with increasing
& . It is anticipated that this trend will appear
whenever the number of nodal diameters is substantially
larger than the number of nodal circles. This trend can be
explained in terms of the dependence of the local disk
stiffness on the nodal geometry. The equilibrium stresses

in the disk are given by

CT} = Ygié&:(l-7oz)aoz4‘gf)
P (3.9.1)
ol 7 ¢t I+3V 4
Qe = '{',/‘iqz}('"gz)(J -8 - 3+v’lo]7
(3.9.2)
where
Z - (3+V)L® - (1+V) 3"
& = \3-\-\5’ b)‘-(\-\-v’)‘c"-f(l-v’)az]
(3.9.3)

We note that
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dgy - \é%ff; (,_Fz) > o

d4%%
(3.9.4)
dSe Wit s 02
TS o e (
3.9.5)

so that for oéFélthe local radial stress increases with
increasing § while the tangential stress decreases with
increasing S . Since S depends directly on (]%)2 the same
can be said about increasing or decreasing the ratio of the
hub radius to the disk radius.

If there are substantially more nodal diameters than
nodal circles the local membrane stiffness will depend
predominantly more on the tangential stress than on the
radial stress for small (%) and will tend to decrease with
increasing (%) up to a limiting value of (% . It would be
expected that the more the number of nodal diameters exceeds
the number of nodal circles, the more pronounced this
effect would be and the larger would be the range of (%)
over which it is observed.

If, on the other hand, the nodal geometry tends to

make Q’r. predominant in governing the local stiffness, then
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the trend of increasing/.{z with increasing (%) is expected.
A second interesting feature occurs for (%) near
unity where for the the higher values of n there is little
variation of/A/zwwith s. This can be explained by physically
reasoning that for large n and large (%) the stiffness is
governed almost completely by the nodai circle geometry since
they are very closely spaced while the nodal diameters are
widely spaced in this region. For large s it would be

expected that more variation with s would be seen.
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CHAPTER 4
THE TRANSVERSE VIBRATIONS OF A SPINNING

ANNULAR MEMBRANE DISK WITH A FRICTIONLESS HUB
4.1 Introduction

Treated in this chapter is the problem of the transverse
vibrations of a spinning annular membrane disk with a
frictionless or loosely clamped hub. By this it is meant
that the hub does not restrain in-plane motions of the
disk but prevents transverse displacements. From a physical
standpoint this case is similar to the case discussed and
solved by Simmonds [36], except here the disk is annular
rather than solid, so that the presence of a hub is on a
more physically realistic basis. The author was assisted

by Mr. Thomas Gilley [37] in the following analysis.

4.2 The Equilibrium Stress Distribution
The differential equation and boundary conditions
governing the equilibrium stress distribution in the case of

a loosely clamped hub are

d (rev) -sg + mmwtrt = o

—

r
G-r(aj = O

Telw) = o (4.2.1)
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where a and b are the inner and outer annulus radii.

Solutions to the differential equation are given by Egs.

(3.2.2), (3.2.3), and (3.2.4). By employing the two boundary

conditions the two constants, C1 and C2, can be obtained

and the solutions for the stresses are found to be [28]

2 2E}
S, = mw%(3*v’)(a1+b?._ g?-"i _ (.1)

(4.2.2)

T
2(a+V 2 3ate \+3V o
G‘e= vr‘u.)igz )\al*.\O.\, rl-mf—&
(4.2.3)
In a partly non-dimensional form, with
= pb
r=p (4.2.4)
Egs. (4.2.2) and (4.2.3) can be written
) T_p2
S = ™M Wb 15255) —% (ffz l)($> f’)
(4.2.5)

_77_



S w3 -}-z\(uszmh (. L3V

6 () 3+V
(4.2.6)
where
a
& = 5
(4.2.7)

is the annulus radius ratio. It is interesting to note
the similarity between the functional form of the above
stresses with those given by Egs. (3.3.3) and (3.3.4),

keeping in mind, however, the difference in the definition
of S .

4.3 The Governing Differential Equation for Free Vibrations
By substituting the stress distribution given by

Egs. (4.2.6) and (4.2.7) into the governing differential

equation for transverse vibrations, given by Eqg. (2.6.4),

separating variables, and using the non-dimensional radius

defined by Eq. (4.2.4), there is obtained for the radial

mode shapes in the present case
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 Flee-neA g
i B3)- (14852 + S Jfw = o

With the change of variable

Eq. (4.3.1) becomes

¥ (x-XX 87“) x’¢ +[2x2-(t+82)x]
rr{liesy « £ s ~an]fw =

where

o =52 (B)+ U3 <]

The boundary conditions imposed by the hub on the

transverse vibrations of the disk require
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w() = o
W(b) = Fuure

where v=C is the radius of the hub. In terms of the

variable x these conditions become

W) = W) = o

(4.3.5)

WQ) = FINITE

(4.3.6)

2
where €7T=S/%% is the square of the ratio of the hub

radius to the disk radius.

4.4 Solutions of the Differential Equation

The observations of Section (3.4) concerning the
difficulties of reducing the governing differential equation
to Heun's equation are also pertinent for the present case.
For this reason, Eq. (4.3.3) will be treated without further
reduction.

An expanseion in a power series about the singular point

at X=1 is facilitated if we shift this point to the origin
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with the transformation

Z = —o2(x-1)
(4.4.1)

where

(4.4.2)
Accordingly, the singular point geometry shifts as follows:

X = | —_—» q-.o
X = & == &=q?(1-57)

x - —_——rs < = ut
The hub radius, originally at X'—'éz, shifts toZ=|. By

introducing this transformation into the differential

equation we obtain
gle-oi-ile- i + (g- o {evie - o -] 9

+7':{l-az(HSzX(-or’)w‘Sz_-(sz — et (5-a) W= o

(4.4.3)
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The boundary conditions become
W(e) = FiniTE

wa) = o
(4.4.4)

It is found that there exists one solution of the form

(4.4.5)

where the Cn are defined by the recurrence relation
§.C,+8C = o
(goC; + ‘z(% + 81<12 = O

a"'"lcﬂ"z +/gn-l Cﬂ—l + Klncn + 8V\+ICYH-I =0 ; nz?
(4.4.6)

The coefficients Q“, {5“ ’ K‘n , Sh are given by

X\ = n(n+t) — Vs

B = - A -E) a1 +(5-E)m - g 2at- 20489
K‘“ = 0(453'181) n(n-1) +(a- X‘) nt -‘5,\(\+12,")s’1 ./("]f
Sv‘\ = - qQ’C\ -8"\ ne

(4.4.7)
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A second independent solution of the form of Eq.
(4.4.5) does not exist because the characteristic exponents
of the solution are repeated. The second independent
solution is logarithmically singular at Z=0Qand hence jis
excluded to satisfy the boundary condition of finiteness

at that point.

4.5 The Eigenvalue Problem

The power series solution given by Eg. (4.4.5) and
supplemented by Egs. (4.4.6) and (4.4.7) satisfies the
condition of finiteness at ¥=o . The boundary condition
of no displacement at the hub, #Z=x | , will be satisfied

if

W) = Z_' C“(/a") = O

(4.5.1)

Equation (4.5.1), with the C“(/Uz) defined by the recurrence
relation in Egs. (4.4.6) and (4.4.7), constitutes a
transcendental equation defining the wvalues of’xuz for
which WC) vanishes with Co not zero. Hence the eigenvalue

problem is that of finding the zeros of the function

) = Z Cotur)

(4.5.2)
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A numerical technique similar to the one described in
Section (3.6) was used to numerically evaluate the roots

of Eq. (4.5.1). The present case has the added complication
that in addition to nodal geometry, defined by integer
values of s, we must consider variations in both the ratio
of the hub radius to the disk radius, € , and the annulus

radius ratio, S .

4.6 The Special Cases of Symmetric Vibrations and Vibrations

With One Nodal Diameter

As in the case of the fully clamped hub, there are two
special cases which reduce the complexity of the governing
differential equation and can be used independently of the
general development for computational purposes or for
verification of results computed from the general case.

The case of symmetric vibrations, with Sax¢g, leads

to the differential equation

plﬁd
<
fl
0

x(x-1Yx- Sz)dx-z, +]zx- (l*"gz)]gy"/
(4.6.1)

where
£\
/az-sw’( )

By introducing the change of variable
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\~-%
g = \“&F

we obtain for the differential equation and boundary conditions

z(‘:"') J{Z"'[(C ')+<] - %/ZW - O

(4.6.2)
W(e) = FinITE

W\.l-—é}l = | (4.6.3)

It is found that the solution satisfying the condition of

finiteness at the origin is of the form

W(z) = % C.g"

(4.6.4)

with

n(nst) =424
(4T Ca

(:n+|
(4.6.5)

The eigenvalue problem is that of determini_ng’,(,{’z such that
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= | -€417
P (o L
nre (4.6.6)

In the case of one nodal diameter, the differential

equation is
[4 W
x(x-1)Yx- 8% iwaz +[zx"— Co+89)x | Ty

SN BN MR

With the change of dependent variable

¥
wW = X Y (x)

and the subsequent change of independent variable

Z = |->(z = oft(1- %)

I-€
(4.6.8)

the differential equation becomes
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£ (o] g-ot(1-8] S
+{<\_("°‘7’(l"g‘)] + <(<__q7.) + (z:_ul)[(_ qz(l_ 82)] z 3__:;

"'7'1'.(3-,447')( <-0(7') Y = o

(4.6.9)
and the boundary conditions become
Y(o) = Fin,TE
YQ) = ©
(4.6.10)

The solution of Eg.

(4.6.9), a form of Heun's equation, which
is finite at the origin is

Yez) =2 C. &7

n=e (4.6.11)
with the Cn defined by
B.C, + ¥C, = o
U Cnet B0 + ¥rsiCrpy =@ 5 n =1
(4.6.12)

where
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"= (i) + 5 (3ou?)

Q
t

-o} (28 (1) +(8-28) m + F (o)

7
& s
t Y

(x4(\"83) %
(4.6.13)
In this case the eigenvalue problem is that of determining

,¢/z such that

H{u?) = :E; C.(?) = o
(4.6.14)

Numerical results for the eigenvalues for these special
cases were obtained using methods similar to those described
in Section (3.6). These results were compared with results
obtained from the general program in the special cases S=o

and €:) and complete agreement was found.

4.7 Results

The three Fortran computer programs referred to in this
chapter were used to compute the first four eigenvalues, n =0
to ™ , of the frequency parameter,,4/z, for values of the
annulus radius ratio, § , from 0.1 to 0.8, for values of
the hub to disk radius ratio, € , from 0.2 to 0.9, and for

values of s from 0, to 3. The resulting data from these
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calculations were plotted and are presented in Figures 8
through 19. It should be noted that no calculations were
carried out for cases in which € was smaller than or equal
to & . This was considered a physically unrealizable
case since it means that the center hole in the membrane
is larger than or equal to the hub radius. For this reason
€ was arbitrarily picked to be at least 10 percent
greater than 6 . The limits on € and § were governed
somewhat by considerations of practicality in the computer
programs. For values of 8 1less than 0.3 the convergence
of the power series was extremely slow and required very
long computer runs. For values of €& greater than 0.9,
the fraction 7%2; becomes large and leads to possible
computational difficulties.

The plotted data, Figures 8 through 19, show that if
the parameters S , € , and s are held constant the natural
frequency of vibration increases as n increases. This
behavior is predictable from the general theory of Sturm—
Liouville eigenvalue problems.

The plots also show that the frequency of vibration is
increased as the ratio of hub radius to disk radius, €, is
increased and § , s, and n are held constant. The increase
in the size of the hub with constant nodal geometry and disk
size causes an overall stiffening of the disk, raising the

natural frequencies of vibration.
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In general, the frequency decreases as the annulus
radius ratio, S., is increased and s, n, and € are constant.
The exception for this rule is found in the case where the
number of nodal diameters is much greater than the number of
nodal circles. For this case, the frequency increases
when & is increased. This observation was also made and
explained by Eversman [12] for the case of the annular
elastic membrane with free edges.

The phenomenon is shown to be due to the change in the
local stiffness in the membrane with changes in the nodal
geometry. The stresses were known to be due only to the
centripetal accelerations induced by the rotation. The
stresses are given by Eqgs. (4.2.5) and (4.2.6). These

equations are repeated here for convenience:

q

.nocoz (3+y) Jéz (, z-’)(ugg_ :9
S8 /o f, /D

o= met {22 sz[uu‘)(oz §- L2

We note that

-90-



Z
o el G H ) <o

%%g s et 3D K S (e > o
so that for ¢D§P$I the radial stress decreases with
increasing & while the tangential stress increases with
increasing S

For the case when the number of nodal diameters is
substantially greater than the number of nodal circles the
tangential stresses are predominantly more important in
providing stiffness and the local stiffness in the membrane
will increase with increasing § . The increased stiffness
causes increased frequency of vibration. If the number of
nodal circles is substantially greater than the number of
nodal diameters the radial stresses are dominant and the
natural frequency tends to decrease with increasing by [12}.
If Figures 11, 14, and 17 are studied briefly it will be
noted that the frequency of vibration is, in fact, influenced
less by increasing or decreasing the hub radius in the
cases where the number of nodal diameters is greater than
the number of nodal circles. This observation can be
explained. The larger number of nodal diameters causes
sufficient restraint on the deflection of the membrane in

thé proximity of the inner edge that the increase or decrease
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in the hub size has little effect on the stiffness of the

membrane or on the frequency of vibration.

4.8 Intermediate Cases of Central Clamping

The cases of full clamping and frictionless clamping
represent the extremes of physically significant hub
configurations. The fully clamped case corresponds to a
disk built into the hub or shaft. It can be viewed as
being equivalent to a disk clamped between collars with
sufficient clamping pressure to prevent any radial
deformation of the disk in the region of the hub. On the
other extreme is the case of frictionless clamping in which
there is no clamping pressure (alternatively, no hub-disk
interface friction) and hence no constraint on the radial
disk deformation in the hub region. Between these two
configurations are the cases of intermediate clamping in
which there is sufficient clamping pressure and hub-disk
interface friction to prevent radial displacements of disk
elements over a portion of the hub region, but not over the
entire region. These cases have been studied in detail
in the axisymmetric case by Bulkeley and Savage [10] and
the extension to asymmetric vibrations constitutes only
minor modifications of the procedures previously established
in this report.

Bulkeley and Savage show that the form of the stress

distribution in the spinning disk depends explicitly on the
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clamping conditions. In particular, for a disk of thickness
h clamped by a hub of radius c¢ with clamping pressure P
and Coulomb friction coefficient 4f, the radius r=g which

limits the region of zero radial displacement is given by

. 2uP
1

wa\nhwt

with

o£§éc

For values of P<? there is no radial displacement while for
35(‘5 C the clamping pressure is insufficient to prevent
slippage and radial displacement.

If the radius of effective clamping is between the
inner radius of the disk and the radius of the hub,

as ? € C , the stress distribution is given by

qf\ - 24V 'V_‘_’_‘_u?z< bz__ ',"ZX r-—l._,_ €'Cz)

s ¢
(4.8.1)
= 2V w12 2\l YT 3V 4.f
Se™ & = X(‘Q -€ )€ s+v
(4.8.2)

where
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(4.8.3)
and

a = inner annulus radius

b = outer disk radius

c = hub radius

g = radius at which clamping pressure and disk-hub
interface friction become insufficient to prevent
radial displacement of disk elements

M = Coulomb friction at disk-hub interface

P = clamping pressure

h = disk thickness

It is also possible that the effective clamping radius
will be less than the inner disk radius. If this occurs
there will be slippage over the entire hub-disk interface.

This will occur if

¢

and the stress distribution will be

Sp = "3;‘; ‘”‘“° (t-rt)Y rt4e c?)

(4.8.4)
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(4.8.5)

where

c. - I -0+ & SEB-8N50+5) o]

O

(4.8.6)
It is recalled that in the case of frictionless
clamping the stress distribution is given by
2+V vmwt 2z
Sp = 25 R (XY 3-8
(4.8.7)
Y vt Z T A A3V 4
Te= o5 T I(F+EF) T+t - 55T
(4.8.8)

where
SF ='<:fk;jz
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Hence, if the computer program for the loosely clamped case

is modified to replace

ot = -(%)'e

(4.8.9)
and the input to compute € is provided, the vibration
problem for the intermediate case with the effective clamping
radius less than the inner annulus radius can be analyzed
by using €, in Eq. (4.8.9) and the case when the clamping
radius is between the inner annulus radius and the hub
radius can be analyzed by using GE‘ r in Egq. (4.8.9).

Note that in the case P=0 we find
()"
€, = -\=<

Since we replace

(4 _C_‘,_)Z ( a\t
& = ’(b € = la)
we find that Sy and G'e are properly defined for the loosely

clamped case.

In the case g=c we have

=V )Rt - U+v°)czl
VTR LGEWYE + () B
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and we replace
c\1
(A -
& =-(\a)

)-1_1(3“') k& -( H-v’)s:‘_]
3+v’ o/ LG =)+ (1 + V)bt

By referring to Egs. (3.2.9) and (3.2.10) and accounting
for the pertinent definition of 82 for this case given by
Eq. (3.3.5) [note that the hub radius in this equation
is a instead of c] we see that G, and Gb will be properly
defined for the completely clamped case.

Hence it is concluded that the complete range of hub
conditions between, and including, the extreme cases can
be analyzed by a simple modification of the basic analysis

for the loosely clamped case.
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CHAPTER 5

THE EQUILIBRIUM STRESS AND DISPLACEMENT
DISTRIBUTION IN A SPINNING SHALLOW
SPHERICAL SHELL

5.1 Introduction

In Chapter 2 it was shown that the equations of motion
for the small transverse vibrations of a spinning shallow
spherical shell about its equilibrium configuration require
the knowledge of the equilibrium stresses and displacements.
It is the purpose of this chapter to present methods for
the calculation of the equilibrium conditions for the cases
of a freely spinning shell and a shell with central clamping.
The linear and nonlinear theories of Reissner [30, 13, 14}
are employed for this purpose.

In addition to providing calculation schemes, an
evaluation is made regarding the adequacy of the use of
membrane shell theory for the determination of the stresses
and displacements. This was prompted by the paper of
Johnson [8] in which was treated the problem of transverse
vibrations of spinning shallow spherical membrane shells.

In his analysis it is found that as the curvature of the

undeformed shell is reduced, that is as the shell approaches
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a flat plate, the stress and displacement distribution, and
hence the vibration natural frequencies, do not approach
those of the flat plate. It is shown in the present analysis
that this anomaly is due to the membrane assumption and that
an extremely shallow spinning shell theory (approaching a
flat plate) must include bending effects if a continuous
transition from shell results to plate or flat membrane
results is to be obtained. Furthermore, the inclusion of
bending effects permits the specification of physically
significant boundary conditions at the hub and outer edge.
5.2 The Equilibrium Equations for the Linear Theory
Equations (2.4.4) and (2.4.5), derived from a variational
principle, correspond to Reissner's linear results [30] in
the axisymmetric case with surface loading due to the
centrifugal force effects. By introducing a stress function

such that

Q.

£+ 0

Nrr‘ - 'ﬁG‘;. =

o;' sl
LI

+

Ngg = €5y =

o
B

where

0 = -3 Pt

and by utilizing the compatibility equation of Eq. (2.4.7)
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we can obtain two simultaneous ordinary differential

equations in the deflection and stress function

vivile -(%) e = z2(L-V) WP

(5.2.1)
£ 2PwWrT
Dvvls + (%) viF = —19—2
(5.2.2)
where
. df . 1d
vE= grr +r dr
and

f’ = mt = mass per unit surface area

The boundary conditions for the case of the freely
spinning shell are that the stresses and displacements be
finite at the point r=0 and that the conditions at the

free edge, r=b, are
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(5.2.3)

If there is a fully clamped central hub of radius a
we must add to the free edge boundary conditions of Egs.

(5.2.3) the hub conditions

wWHa) ~o
u(a) = o
IORE

(5.2.4)

5.3 The Equilibrium Equations for the Nonlinear Theory
The nonlinear theory of Reissner allows for the
possibility of finite rotations of shell elements. As

noted in Egs. (2.4.6) and (2.4.9), the equilibrium equations

are
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(5.3.1)

< £ (5.3.2)

where

toy = F

Z
3

. z,
’\’ae°f¢9= Y *P W

g . ¢

The same boundary conditions apply in this case as do
in the linear case, except that the vertical edge reaction
(Kirchoff condition) is automatically satisfied and specifi-
cation of (¥ is not required unless it is desired to

obtain y$ by integration.

5.4 Stresses and Displacements in the Freely Spinning Shell--
Linear Theory
Because of the lack of utility for physically signifi-
cant vibration problems, the case of the freely spinning
shell with no hub has been treated only by the linear

method except for the boundary layer analysis. The major
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result of this analysis is the demonstration of the continuous
transition of the shell solutions to the flat plate solutions
when the curvature approaches zero.

By following the method of Reissner [13], Egs. (5.2.1)

and (5.2.2) can be reduced to a single differential equation

- Z
V702 (05 37F) - () e ere) = Ho + TRG-VVp

(5.4.1)
where
it
D -
\vz(i-v®)
-
N> J%eo
and

Reissner obtains the solution to the homogeneous equation

corresponding to Eg. (5.4.1) in the form
A s r
Wy = 0, Ber_p +C, ber:p‘ + C.skef'l'

L r
+C4 kelj +C,5 + C., 1”7 4.2
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:mz){c‘ Lclf -clber‘j + C3 ’(?‘I

—izlktrj; -+(%’In£% + (?8 .f

p

(5.4.3)

Of the eight constants in Egs. (5.4.2) and (5.4.3), Reissner
shows that C8 can be excluded since only derivatives of F
are significant and that C7 must be excluded to preclude the
possibility of circumferential displacement.

A particular solution to Eqg. (5.4.1]) which has the
proper limiting behavior as the radius of curvature becomes

infinite can be obtained in the form

(-4
1
- lal
W+ AF = Z a.r
nso
(5.4.4)
By substituting Eq. (5.4.4) into Eqg. (5.4.1), solving for
the unknown coefficients, and equating real and imaginary

parts, there results for the particular solutions

4n
_ eV)put r‘" Z {(i—z;?s) [ (i%)

P a2

(5.4.5)
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s = g:__g—_g_&a_ M Z{(zw#z)l I? (11)

(=3

(5.4.6)

The general solution to Eq. (5.4.1) is the sum of the
homogeneous solution, given by Egs. (5.4.2) and (5.4.3),

and the particular solution:

S -=C‘,ber'£' + C,Zbez'f +C kerj‘- + c41<ei_—g— +Cs

Wt 4
PR e ()

(5.4.7)
E£° { L
= VTEZTT;?- C§£>e: EC/’ +C A1ﬁ_p._6l gp47
4.1
07, (-v)peirt (#)pe S ()
l-CQ(nI] 32P Z[_(-z +z)l]z(’lﬂ)(5 4.8)

The constants in these solutions are to be determined from
the boundary conditions. We choose to exclude the possibility
of a rigid body vertical displacement by setting CS==—<; .

The Kirchoff condition
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leads directly to the conclusion that C6=0. The requirement

of finite stresses and displacements at the origin is wviolated
r

if ¢, and C, are not zero, since kfrjﬁ is singular at =@,

3 4
Hence Egs. (5.4.7) and (5.4.8) simplify to

= C, [ber(:g) -l] +C, loei(;g')

X 7 4n
¢ B Lot Z[én?aﬂ]" ()

(5.4.9)

E

E£% o |
= | G ae,(;)_czzocr(g)]

n~{ r¥wn
+ (- w) w®, +v‘) Z’ [(( ‘ZI‘)n T (a)

(5.4.10)

The two constants Cl and C2 can be determined from the

remaining two boundary conditions
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N (b) = o

Mrr
O

= us-,,+—f-u‘},=o at r=b

These two conditions lead to two simultaneous equations

in the unknowns Cy and C,. Before writing these two equations,

note that at r=b we have

_ ’\4/12(1—v’7') - [ bIEE ]/4'

= z
3 DR

L

. L
=2

From Eq. (2.2.1) with z=0 at r=b we f£ind that
A’ﬂ?z-éﬁz = K- h

By solving for R in terms of h and be we obtain

Lt + L%
K = —

Within the scope of shallow shell theory this becomes

Z
K & ——

Z A

Hence we can write
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(5.4.11)

With this observation we write the two equations in C, and

1

C,

£42 i! ber A
FAlieli-v) R e SRR AC I

7. Lber A 4 -y e 2]~ ber A-(-v) S5 ]

- \'{'”(A‘) 4 .;‘V:. ;"(l“]

where
2 b ( I)‘“ _C. 4
TOR Y £ 7[ +3)1]z zﬂ)
i - ‘14 O)wl r \dn
{l-((‘) = ('3"_2 w('4+ (34-2 w o ’[('z _n),]‘d(z‘?)

and differentiations are denoted in the following way:
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GE - 1)

ﬁl; beru = ber' u ) ec.
If we introduce the notation '
8. (A) = bei A+ (1) 2D 5, (0) - b
8.,(\) = ber A - (1) 282 2 () = b_%_m
$ (M) = -£" W) =X 1)

$.(N) = £,(})

we obtain the set of equations

'allcn - 5%7, “qub (A)
a'ucl _a‘c.zc—z = -pg _::.;(l Vﬂ ¢ ('\)
which have the solution
T0) 3ah) - TEUD 4 (3) 5,00)

QC(A) =
) Ser () 5N ~ 3, (R) 32zl )
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L4 ) 3, (A) - E{él 2 #,(4) 3, (4)

a.“(l) alz('l) - au(’n a‘cz(’\)

C,(A) =

A slightly more compact form of the solution can be

had if we note that

at+v 112 v 0" {(4n+Yane8)¢ land] - A\
—?"45 /\) = - 32 :L:-Jo [_(‘Z.n+3)”z (1)

P L2 Py, wevps S (=) ) 7 AYAT
20 Cﬁz(/\) ‘e—"‘ /} 7E"'" ['Ln-l-’L)I]z ('L)

We write these as

e = A2 4 o)

%u) M&AZ $.(1)

where

- 1 <0 -n" (4"+6X4n+s)+v’(4n+¢)] Aykn
FO) ==X [[(w%)!].c (%)
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With these definitions the constants can be written

Yoy -__ (34v)P Wik g4 w )

KD
(5.4.12)
(3+V)PSLE 44
C;C/\) = Qlj ,? (P-L(/\)
(5.4.13)
where
_ B @A) - E,(0) 9, (A)
w () = —
S (A F(A) - §,,(A) @, (A)
(5.4.14)
B(4) 82, (A) - &,(A) &, (A)
wll) =
&, () 3,,LA) =3, (A) 3,(N) 5 415

Equations (5.4.9) and (5.4.10) together with the
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constants defined by Egs. (5.4.12), (5.4.13), (5.4.14),
and (5.4.15), completely specify the stress and displacement
distribution in the freely spinning shell. The stresses

can be written explicitly by noting that since

we can write, using Egs. (5.4.9), (5.4.12), and (5.4.13),

RIVA/ V4
(V) LY (-0)" (n4) (A PN
~ L= (b) +7 Z‘_(‘?_v\-l-z)'jz ( }
(5.4.16)

YL
= (34.,,3)?@15’&{ ‘P,(’\)‘~ ber /\(Z) - bi‘(r{\/i)@]

! ;
e a0 e A7) + S5 D] - L GEG(E)

ZJ e )n l(4n+4X4"+3) (—Ai —E—>4n} (5.4.17)

ey ('Z. -l-'t.),]—‘

The normal displacement «3 can be obtained by substituting

+2(t)

Egs. (5.4.12) and (5.4.13) in Eq. (5.4.9):
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o cuv’*@"?‘% | 4,0 (ber M) 1)+ uy(A) bei A(D)]

ENit(r-v?)

(A%)] iu—iﬁ;uz z E)%f

N*O (5.4.18)

Although not required for the dynamic problem, the
calculation of the shell bending moments can be accomplished

by noting that they are defined by
wr
M = =D + v %)

Mog = ’D("U}}r"""w?r)

By performing the appropriate operations using Eq. (5.4.18)

we obtain for the bending moments

7,2 Ve
My ® (3*V’)g°° o 'Qii @) [ bei M%) + (1-v) l;e(r:/;\)( 4,)]

el
- L.LL,_(/\)‘_bcr‘ M) - (1-v) '3%(,5\(“7;)/9]

12y P o (DUt YA +8) 4B ne)IA O\
B e e
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+ q;l(/\)xc"“’%) + V° ber )\(%;)1

L\ AR T ()[4 4 6) +P A4 (4neS)] Ar 4«}
-\-32 —L(b) V‘Z:o \_(‘L\n+'5) !.]z ('L ‘o)

(5.4.20)

5.5 The Limiting Case of the Freely Spinning Flat Disk
Consider the case when the radius of curvature
becomes very large, or, alternatively when the parameter x '

defined by

= -z.tl"'b(\ -v°) \/ hé

where h/t is the ratio of the shell rise to the shell
thickness, is very small. It can be verified that for
small >\

a,(A) = bei A+ - kefld o (349 2

Y

- ;! +v
3N = ber A - (IBSLE o LAY

a'u( A) = A =~ %

-114-




ber'/\ I\z

a—;z()\) = Y - T

3,,(N 8,,(N) -

V)
ulN 8,0\ * S

- D" (An+ A nis) £V (4ned)]
y) =
4>l( ) Z (‘zr\ +3) l ]?’
= - S
$,N = -g

P, (A) 9, LA

® (A) 8, (A) -

It is seen then that

S BN En(AN) = LY

‘)
3.\ s, (N = 2N

,l'M (.U‘(A) - "4!_'
A-=o

IlM ‘P—;(’\\

-.o

Furthermore, for small I\

bei ’ A(

B

M%)
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ber A(7%) = I

By referring to Egs. (5.4.16) and (5.4.17), it can

thus be seen that

(5.5.1)

143V L\2
IA"M Nog = yf\fﬂ“’l"’z{' - ‘s+v‘(b) I
-0
(5.5.2)

Equations (5.4.21) and (5.4.22) agree with the results of
Timoshenko and Goodier [28] for the case of the freely
spinning disk. Furthermore, by referring to Egs. (5.4.18),

(5.4.19), and (5.4.20) it can easily be verified that
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A'-:g Ww = o

K—» oo _
{(5.5.3)

livn | <
-0 hdzz ©

> oo (5.5.4)

i “A;0 - o

A=~>o
R+ oo (5.5.5)

Hence, it is seen that the bending theory provides displace-

ment and stress distributions which show a continuous

transition to the flat disk results as A—-»o and R —=co.

5.6 Computational Results for the Freely Spinning Shell
The solutions for the direct stresses and normal
displacement have been computed by direct numerical evalua-
tion of Egs. (5.4.16), (5.4.17) and (5.4.18). In addition,

the outer surface bending stresses, defined by

M
tG’rB :-Brr. ._t__r_

(5.6.1)
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'(%B = BQQ - _-‘T_.
(5.6.2)

have been calculated by direct evaluation of Egs. (5.4.19)
and (5.4.20). It should be noted that Egs. (5.6.1l) and
(5.6.2) are somewhat unconventional in that they have the
dimensions of force per unit length as do the present
conventional definitions of the direct stresses. This
definition was adopted to allow a direct comparison of the
bending stresses with the direct stresses.

To furnish a basis for comparison, the corresponding
results have been derived by using linear membrane theory.

In the membrane case Egs. (2.4.4) and (2.4.5) become

d(reg)-op + mirt = o
o7 (5.6.3)

2T
Q:r + QSQ ~ v O Y
(5.6.4)

The membrane solutions can readily be verified to be
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34V ?ew"b-" ry
W= T HE (b)
- (s+v*)/:w7~ez[_._ )‘_/_-)z]
E,G;?t:&h) z b

e (l'l'V‘) (—b‘l"VJ)PH)-Lbz

Viz(1-vY) N

P
)

__6 (1+v)

Boo™ mten AL (rVptE

(5.6.5)

(5.6.6)

(5.6.7)

(5.6.8)

(5.6.9)

The results of the bending theory computations are

shown in Figures 20 through 24. We have used several values

of A varying from the nearly flat configuration to the

shell with a fairly substantial curvature (or alternatively,
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very thin). The results shown were obtained with V':o.zo .
However, Poisson's ratio does not contribute strongly to
the character of the solutions. These results can readily
be compared to the membrane theory of Egs. (5.6.5) through
(5.6.9).

The transition with decreasing A. from a solution
which is very close to the membrane results to one which
practically coincides with the flat plate theory is clearly
evident. It is noted that for high A the bending stresses
are small and show little variation except near the edge.

By referring to Egs. (5.6.8) and (5.6.9) it can be seen

that membrane theory accurately predicts the magnitude of

the bending stress in the interior of the disk but, of course,
fails to do so at the edge since it is not accounted for

in the boundary conditions. With decreasing A the bending
stresses first increase, then decrease as the thickness,

or bending, effect becomes predominant and then the decrease
in initial curvature dominates.

The direct stresses show a similar trend with decreasing

A . For high )\ the direct radial stress is nearly zero
while the tangential stress displays the parabolic character
predicted by the membrane theory of Eg. (5.6.6). With
decreasing N we see a monotonic transition of the membrane
type solution to the flat plate solution. It is particularly

interesting to note the radical redistribution of the
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direct tangential stress as X'.is.decreased.

A similar observation regarding the deflection u¥ is
also made. The characteristic parabolic solution of the
membrane solution is seen for high )\,while zero normal
deflection is approached for small A , in which case the
inertia load tends only to stretch the midsurface.

From these computations the importance of the bending

contribution is seen and it is concluded that Johnson's

results [8] may lead to serious errors. It is concluded that

for values of A which are not large the full bending

theory should be employed for computation of the equilibrium

state even if a membrane theory is subsequently used for

the vibration analysis.

5.7 The Limiting Case of Large X ~Existence of Boundary
Layer Phenomenon at Outer Edge
It is noted in Figures 20 to 24 that as X becomes

large the direct stresses Nrr and Ng and the displacement

e
approach those predicted from the membrane theory. The

bending stresses Brr and B which are calculated from

66
membrane theory are seen to approach those computed by the
general theory for large )\ in the interior of the shell,

but deviate significantly near the edge of the shell. 1In

fact, we note that the membrane theory is incapable of

satisfying the zero bending moment condition at the outer

edge, and this accounts for the deviation between the two
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solutions in this region. Since for large )y the deviation
between the general theory and the membrane theory is
localized near the outer edge, a boundary layer phenomenon

is suggested. Reissner [14, 38] has dealt extensively with
problems of this type for laterally loaded shallow spherical
shells. It is the purpose of this section to demonstrate the
existence of this phenomenon for the case of the spinning
shell.

Because of the ease with which a nonlinear membrane
solution can be obtained, it is convenient to investigate
this phenomenon by using Reissner's nonlinear equations for
the spinning shell given by Egs. (2.4.8) and (2.4.9) and

repeated here

T
r.r r (5.7.1)
slwpr -2 18, g
T Ty TeTer vt Et (5.7.2)
where
f Ny ~ Lo
(5.7.3)
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o.
<
~

<
px

oo~ dr TPW |
(5.7.4)
dw _ &
r (5.7.5)

The boundary conditions are that the solution be regular

and symmetric at the origin and that at the outer edge,

r=b
My ¢
- = = éf + W——’;: -0
Nep = ©

It is convenient to non-dimensionalize equations

(5.7.1) and (5.7.2) by introducing
Y "-/(o/"/b
‘b" ¢a?<x)
W Y Fx)

in which case we obtain
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D¢°(%)1‘.%xx+1$ -1"!]- ¢°q’°(%()i§(3 + %)C e

X

G B U - L1 Ty 2 () K - B0 (B
L) E
.= (2NN B pet®) ~ (BNe) ¢

then we have

ZACIACEE BEIELEAR AL

E

(5.7.6)
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=2

Xx x X

<
-‘ +x‘x -%‘E _?-r—'.z-_\ﬂi‘— = =X
(5.7.7)

It is seen that X‘ is a measure of the'nonlineérity of the

problem.

The stresses and displacements will become

b2 % \ 2400
Nrr ‘;—l(—l(a) Et ‘1 "(')-:') ";(1(%+V)PH)IL) '—x—"

N

0o ’f Yo £1x) + WW-’Z(:%)-LXI ‘/HJ-‘( L-é)’l

T
= /-l‘;.,_ (-_,w)pw‘ \o‘\ﬂ'(x) +a:)%,‘v»]

o

w-

2 < (D)o~ (B og - (3] 00

‘'By expanding and using shallow shell relations and the

definition of )\ we obtain for dw'/d)(
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dw _|__ (x+V)pw Rt e

X Tt EVlz(u v?) ?(X)

The bending moments will then become

V) p it
M v g, v ] - OS2 (1) (g, 03]

oo+ B F e ved 2L (T vy, ]

The boundary conditions on the non-dimensional form of the
problem will be that f(x) and g(x) be regular and symmetric

at x=0 and that at x=1

Note in Egq. (5.7.6) that

L _D__?} LI S O
& Et T Re(ivy) W T N

Hence, we write the defining equations
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4 \ \
(K Vet et egl+f - $53 - =
(5.7.8)

) +'§(“-Y-* -'%z-‘; -<}+‘9c{--—--x

XX X
(5.7.9)
To investigate the boundary layer phenomenon which
exists for large )\ we make use of some of the concepts of
perturbation theory [39, 40]. Since the outer edge is the
region of primary interest we will consider "inner" and
"outer" expansions relative to that point. A suitable outer
variable is X with’/w= {, in which case Egs. (5.7.8) and

(5.7.9) become

64\-?“*%3)('-)%‘%]*; - _ﬁ&g = ©

(5.7.10)

L L ¥ 2
;Xx + ¥ x)(._ x‘-Q _n? + = ~¥X
(5.7.11)

where Q“' is assumed to be a small parameter defined by
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The first term in an asymptotic series in powers of & will

be defined by the equations

Q—X‘Y-?%to

(5.7.12)

L A 1 1 T -
;xx*xgx‘xig_?-*l)(? - =X
(5.7.13)

A solution to this degenerate set of equations which

satisfies the boundary conditions at x=0 is taken as

$.00 ~ o

(5.7.14)

00 %\\-\fﬁ?ﬂ

(5.7.15)

This is the nonlinear membrane solution in the case when

the membrane shell is not deflected to a flat plate. We
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will assume in this analysis*that‘é]‘Zl r the condition that
the deformed membraﬁe shell is not flat, so that the above

form of outer solution is valid. It is noted that Egs. (5.7.14)
and (5.7.15) will not satisfy the boundary condition of

zero moment at x=1, since it is found that
O
where

S ~ \ - \yi-y

To investigate the nature of the solution in the
neighborhood of the free edge at x=1 it proves convenient

to recast the problem by defining
G0 = 3,00 + GO
§&) = E(x)

In this case Egs. (5.7.8) and (5.7.9) become

(L;\i\q-\c"xx '\'—;ZC"! ".)_I(.ZC-’:( + (1 -8)F - x%&' =
(5.7.16)

v \ | 4
Y *X T @ T o(-8e e ~o

(5.7.17)
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The new boundary conditions require that F and G be

regular and symmetric at x=0, and that at the free edge

PV - —(\+\r’)%

C%x

-~ o
The inner problem is formulated by choosing the

parameter 4f to be

\
,/4/ =~ )\ e
in which case
A
X~* € v

The outer edge is made the origin by the change of variable
\ \
s = ¢ (v-ex) =z (- %)

Equations (5.7.16) and (5.7.17) then become

€ c? _ Yeve
6'75 - es C_’? —(_——"éi)z < + (1-8)F - G‘? o
(5.7.18)
€ ¥ €G°
R LRIGUEEE SR
(5.7.19)
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The boundary conditions are

'g-ao:

Ve o
- = AV Ry
A g Cav) g
- -~ O
s = "é- ° F and G regular and symmetric

If ‘i is 0(1), that is if we restrict ourselves to a

narrow region in which \-'VL is 0(¢), then Egs. (5.7.18)

and (5.7.19) and the boundary conditions can be approximated

to within terms of O(¢) by

é:g%.4.(l._g);?

i
0

(5.7.20)

(5.7.21)

ﬁ—'—oo: G RSQULAR  AND  SYMMETRIC
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Equations (5.7.20) and (5.7.21). can be construed as

defining the term of O(€°) in an asymptotic series in powers
of the small parameter € . 1In principle, the higher order
terms could be sequentially obtained and the procedure of
matching with the outer solution could be accomplished.
However, we have succeeded in demonstrating that there does
in fact exist a narrow region in which the solution departs
radically from the outer solution and can be made to

satisfy the free edge condition.

From the above analysis and the behavior shown by the
computed solutions, it is con¢luded that for large A the
solution is characteristic of membrane theory over the
interior of the shell but in a narrow region at the edge it
will involve significant bending to allow satisfaction of
the free edge condition.

A complete analysis of the boundary layer phenomenon

will be undertaken as an extension of the current effort.

5.8 Linear Theory for the Case of a Fully Clamped Central
Hub
In the case of a fully clamped central hub the boundary
conditions to be satisfied by the general solution given by

Egs. (5.4.7) and (5.4.8) are
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u&'

-
Q
&
|

0

U 0O
(4}'{\"0 )
(5.8.1)
trbo N(\r -0
:’—E-Fv"uo i =)
v (5.8.2)
Wop + O ~©
The Kirchoff condition agadin requires that C6 vanish The
general solution then becomes
C l:ef + C% Emn'— +-C' kcf:p +‘C4 kE(“e + C:-
oo
. 2(34+Vv) L (-7 r')4"“”°
= ; —
M=o
(5.8.3)

"
% = _;':"\C‘ beif - Cebery +Cakeiy - Cq ker |

+gﬂ+mmzwiﬂ(ww

(5.8.4)

Np: = (r‘/‘q) \ca bei'(:;") -G bcr'(_{) +Cy ke I(-g)

~cq ker'5)] + 50 9.(%)

(5.8.5)
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r; ber"(r/[)
N * c\ber(4) - bf/}(l)] + C ibe: /P }

ke (4’)
+C,A ker(?p) ke' (" + CA kei (%) + rr/'_e ]
v)
A
ber ((‘i?)]

*-—-—'L"""i bed ) + (\-¥) =
Mer = TG C\eil ) 72

3 ' -V) K (/)
%)—Ll—w)ba‘/i%)l*'cz\kei(% L) er 1

6 (7)) e }qﬂﬂ

- CA_\ker'(%) - (1-¥)¥ 70

- C‘,L\\oe(‘(

(5.8.7)

et (%
ic\\\f bei (%) - (=v) E_r_;j(_:—"l]

" \
Moo ™ Vielh D)
er'( 4)1

-C'L\V’ bcr(fﬂ) (- V')be‘ (/1)] +C \\fke«(/i) -(- )k“/ai

eu(u)] Eif?,f (%) —{

k
-C,;\V’kef((@) A () S /R (5.8.8)
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(4 ol
2 L0~ e BEEAT e (1) B L]

el kOB T o () ke CAT

“ ({:,SZ + ‘L()'\'::\-V) \%3(%) - VJC&‘('_/,Q) '35(?2)] { (5.8.9)

where

ws = Eﬁ—b—z?u}*
= okt E¥
Np ~ 0 05 Npp'
Ngg = P“’lbz Neo
Mep = Pttt Moo
Moe = Puo‘loz'l: Mgg

Ud =~ bu*

. el (_q‘""bn“) ° An+Z
q.¢ ‘2) ~ L Trn) 17 u)

. 20 (=) (zviez)an+S+V) \Bntd
: %7_(/1) - :L;O K("’-V\'\"Ql.lz (zj)
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/'Q),,Z..:‘ [(‘z +2)17° (-‘4)

(-1 (zn+)\(Anas)v + And
N &?znfif el ()

The constants C, through C. are determined from the boundary
conditions which lead to the following five algebraic

equations (here written in the same order as the boundary

conditions of Egs. (5.8.1) and (5.8.2)):
Cs ~ -C, ber M%) -Cy be: ,\(a/b) "C-sker)(%)

cukei A08) - 5, 40)

(5.8.10)

3
C.‘befA(%) (c+w)__gcz_é§9%)1 £ C \H-V’)b;{a)}(gb) +‘ae‘,>\(g/é)]

4 Callker A% - ke MIY o ervi kel dO) gy (9]

—(%SL"C%@X?%(‘A{%)'V)&(%%) "%s(')\ig\;)l (5.8.11)
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C, ber' M) +Cobei’ (Fh) +Cs ker' M) +Cy kei 'MH) =

—

'c('s+v’) §_>
3.2 -
(5.8.12)

, W) A
C oei' A -Cyber') +Cykei'A - Coker'A = W ()
(5.8.13)

C e ha (-] L {ber X - (1 -v) lse;,\i'/\]

+ C-s\kei A+ ("‘r)k—c{-'—’\] - Cq_\ker)\ G l(__x_ei ',\]
3+v’?1( ) (5.8.14)

It is seen that C1 through C4 are defined by the four
Egs. (5.8.11) through (5.8.14) while C5 is obtained from
Eq. (5.8.10). As soon as the constants are determined, the
direct stresses, bending moments, and normal deflection can
be computed from Egs. (5.8.5), (5.8.6), (5.8.7), (5.8.8),
and (5.8.3), respectively. The outer surface bending stresses,
defined by Egs. (5.6.1) and (5.6.2) are directly obtainable
from the bending stress results.

For demonstration purposes we have evaluated the stresses
and displacements for the case of a hub with (a/b) - 0.125

and V' = ©0.20 . The results, plotted for several values

of N , are given in Fiqures 25 through 40. The character-
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istics of the solution will be discussed in Section (5.10)

where they are compared with the nonlinear results.

5.9 Nonlinear Theory for the Case of a Fully Clamped Central
Hub
As will be seen in detail in Chapter 6, the nature of
the spinning shell vibration problem is critically
dependent on the stress and displacement distributions
obtained from the equilibrium solutions. To assure that
an accurate evaluation of the equilibrium state is available
for the dynamic problem, extensive calculations have been
performed, for the case of the clamped central hub, using
Reissner's nonlinear theory [14] which allows finite
rotations of shell elements. The linear and nonlinear results
have been compared and the regions of parameter values in
which the nonlinear effects are important have been established.
The governing equations of Reissner's theory were
derived from a variational principle in Chapter 2, were used
in the boundary layer analysis in Section (5.7), and are

repeated here for reference:

©

¢
"Di¢rr+'ﬁc‘%{‘-—r‘—y+% = 0o

(5.9.1)
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]
— Yoo w L L (2+v) 5,2
Ef{w"’”’L r ’Fi;’ Sz b - -G
(5.9.2)
where
r Ny = W ' (5.9.3)
. dy 2.2
'Jeo ~ I +er' (5.9.4)
des>
g ¢ (5.9.5)

As shown in Section 5.7 , a non-dimensional form of

these equations can be written
!
3 + I -Yig -
x“-?“ % '?il+§ ¥ X < (5.9.6)

S L [ .
e ¥ % ",%‘ -t *z\"% X (5.9.7)
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and

. _ or*t
MU BEeL

The functions f and g are defined such that

Nee = (34v) P utlo” LSQ

(5.9.8)
N = SN X*
so = 3+ Ul |1 () + 5%
(5.9.9)
duw a+¥) bt 2o
X = = P wWR® 9(x)
=t @ f d (5.9.10)

-140-




Equations (5.9.8), (5.9.9), and (5.9.10) can be written

in the slightly modified form

_ . N _ () putRee (b )2 f(x)
S¢ = .1ff Egi (Fa) '

¢ (2P (5.9.11)

< - Nea. _ (3+v)ﬂco"?zE(-éb-)Z[{’( ) + -s:\":(

t Et
= X‘E("%)z\ﬂb() (5.9.12)
Jz dw | (2+v)PuwiR"
Fdx T Et g
= *o‘ff(x) (5.9.13)

where for convenience we have defined

P
wix) = $'x) + v

The definitions of Egs. (5.9.11), (5.9.12), and (5.9.13)
prove to be convenient when describing the equilibrium direct
stress and displacement distributions for the vibration
problem in Chapter 6.

The bending moments are defined by
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+ UOZ 2t
M, = - 3t)puwtd ()\g, +V¥]

3
K s (5.9.14)
ARy LYy
Moo= - (%Jrﬂﬁp?bo (Y‘) K‘%“ i V%I (5.9.15)

The outermost surface bending stresses are given by [13]

B 4%
\\Y - * e LA.QQ '
OE {.Z

By referring to Egs. (5.9.14) and (5.9.15), and making use

of the shallow shell approximations, it is found that

Ly V)bt ! L S

Sta, £ \z2(i-v'Y) (,\"-)‘.%x T ] (5.9.16)
N I L A 3

Tog = * =% W(»)\?“”lx](s.&l?)

The boundary conditions accompanying Egs. (5.9.6) and
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(5.9.7) are

Y=1\% ¢
3,‘ + _)‘E'% - o (Mrr=°>
Y ~ o C Nrr = ©)
(5.9.18)
Y ~3/4
- (do .
% T - 0)
I TR X SR
x Yeiv 77X = o (U (5.9.19)

Equations (5.9.6), (5.9.7), (5.9.18) and (5.9.19)
constitute a nonlinear two-point boundary value problem.

A method which is essentially a modification of Archer's
technique [18] has been employed to obtain solutions for the
stresses and axial component of displacement.

Archer's method is iterative in nature. He solves the
linear portion of the problem and then utilizes this solution
to evaluate the nonlinear terms. These are then treated
as an additional nonhomogeneous contribution to the linear
equations for the next solution step. This procedure is
carried out for several iterations until successive solutions
coincide to within a specified error. Archer's chief
contribution is the finite difference scheme which he has
found to be appropriate for solutions to the successive

linear two point boundary value problems.
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Archer's method, in its basic form, was initially
employed to obtain solutions to the present problem. The
grid employed 36 points in the interval from X'=34, to

X ~ | and represented nearly the limit in complexity
which could be handled on the Wichita State University

IBM 1620 digital computer. While some results obtained by
this method were satisfactory, several instances occurred

in which the iteration procedure diverged. Since a buckling
phenomenon is not expected, it was concluded that the lack
of convergence was due to some ilnadequacy in the technique.
No attempt was made to identify the source of the conver-
gence problem and it is possible that the particular
implementation of the method was not adequate.

In view of the convergence problems encountered with
Archer's basic technique, a slightly modified method was
employed and convergence was obtained for all combinations
of parameters used. This method, discussed more completely
in Reference [41], employs the finite difference method of
Archer, but defines the successive linear two point
boundary value problems involved in the iteration in a
different way. The method is best explained by considering
a simple example. Assume that we have the simultaneous

nonlinear equations
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$'+ W ~alx) + P°

w'"+ 2 P Y

(5.9.20)
The first step in the procedure would be to obtain ‘b.,

and Y, , solutions to the linear problem

$"+ U, = alx)

Y+ d, =0

(5.9.21)
We then write the true solution as the sum of 4§ ’ Qb r
4

and some remainder terms qsz and #lz

14

b = qb,’* qbz

W~ L//."“l»[’z

(5.9.22)
By substituting Egs.

(5.9.22) into Egs.

(5.9.20) and making
use of Egs.

(5.9.21) we obtain the governing equations for
qbz and qbz :

<bzll + '-L'—L "’ZdJ, ¢1 - t#'L

X
Qb;f'* qb1._ qboqbi__lL'<$1_‘ ¢hlﬁ,4~4&zgﬂz

(5.9.23)
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In Egs. (5.9.23), <b, and Y/ are known functions of
X .

We now repeat the above procedure by considering <b3 r

Q[la_.‘ to be the solution to the linear portion of Eq. (5.9.23):

qb-; + ¢’~5"2¢, ¢3 = qS'Z
¢3“+¢3-¢'¢3‘¢:¢3.‘ ¢a¢’/

(5.9.24)

We then consider ¢z ’ ‘.é’z to be composed of qS , 4,03 and

some remainder ¢4_ r 4,04 ’

Cbi‘qs-s"‘ <?£4-
L)Z"z h ¢3+¢4_

(5.9.26)

The equations for <f>4 ’ ¢I4 are obtained by substituting

Egs. (5.9.26) in Egs. (5.9.23) and employing Egs. (5.9.24):

by by - by m by by v BT

'Y
' + by - b by - b by bty - by~ ol + by ly
(5.9.27)
In these equations 46, ' 453, L//, ’ (.//3 are known functions.
We proceed as before, solving the linear part of Egs. (5.9.27)

and proceed through n such steps until /<ﬁ-¢n_,/ and
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’yDZn_‘/ become small compared to the accumulated

solutions

n

qbﬂk cb' + qb3 tooe = ;E? ¢%i-l

t=1

W= LP.*‘/’a"":.Z Wiy

c=1

The main advantage of this method is that at each
iteration after the first some features of the nonlinearities
are included in the linear equations, while in Archer's
method the particular form of the nonlinearity is relatively
unimportant at a given solution step. The principal dis-
advantage is, of course, the increased complexity and logic
involved. It can be seen from Egs. (5.9.21), (5.9.24) and
(5.9.27) that the linear equations to be solved change
from step to step. However, the change is systematic and
can be accounted for simply oy updating the coefficient
matrices in the finite difference scheme after an iteration.
Other than the necessity of a few more computer instructions,
the computational requirements for this method are not
substantially more severe than in Archer's basic technique.

In the application of the above technique to Egs.
(5.9.6), (5.9.7), (5.9.18), and (5.9.19) convergence was
obtained for all the combinations of parameters which were

tried. The results of these computations are plotted on
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Figures 25 through 43 where they are compared with the

corresponding linear results for % = 0.125,

5.10 Comparison of Results for the Linear and Nonlinear

Theories

Solutions for the stresses and displacements in the
spinning shell fully clamped at the hub have been obtained
by using the linear theory of Section 5.8 and the non-
linear theory of Section 5.9 with a grid of 36 points in
the region o.rzs¢ X ¢ | . We were required to impose
the restriction of 36 grid points because of computational
limjtations. In some of the results some slight deviations
from more exact results will be noted but the general
agreement between comparable calculations is considered
satisfactory. The results have been plotted in Figures
25 through 43 for four values of the shell geometry
parameter A =oc.ose , 1-© ;y 3.0 , and 7.0 ,
which cover the case of a nearly flat shell to one with
a fairly substantial curvature. For each value of A we
have obtained the linear solution and the nonlinear solution
for five values of X' , which is the inertia loading
parameter and scales the influence of the nonlinear terms.
We have taken Y-—0.0l, .3% , 1.0 , 6.0 , and
120, O, which cover the range from very low to very high
inertia loading. A value of Y =0.5S would correspond to

deflection of the shell to a flat plate in the nonlinear
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membrane shell theory (see Eq. (5.7.15)).

Figures 25 through 28 show the radial direct stress.
For small X it is seen that the stress distribution is
nearly that of the spinning flat fully clémped disk.
Furthermore, for A < 0.05%0 and A=l.0O , practically no
nonlinear effect occurs, as is seen by the fact that no
variation with Y occurs, to within the accuracy of the
graphs, and by the fact that the linear and nonlinear
theories are in good agreement. For increasing A we
find a substantial variation of the solution with X‘ . For
low ¥ the nonlinear and linear solutions nearly coincide
while for large ¥ the solution is nearly that of the flat
disk. In particular, for small.‘f and increasing A r
the characteristic decrease in importance of the radial
stress is noted.

These phenomena are readily explainable on physical
grounds. For small A the shell is very nearly flat so that
we expect the stress distribution to be near that of the flat
disk. For higher %; curvature effects become important
and for small ¥ a membrane stress distribution is approached.
For increasing ¥ the disk progressively flattens out and
the stress distribution alters radically until finally, for
very high )\ , the stress distribution is about the same as
if the shell had been flat to start with. In this case the

stress distribution required to overcome the initial curva-
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ture is small compared to the additional stress built up
after the disk is essentially flat.

Figures 29 through 32 present computed results for the
tangential direct Stress. The same trends are seen here as
were seen in the case of the radial direct stress. For
small A the stresses are those which occur in a flat
disk and no nonlinear effect is possible. For high >\ and
small K‘ the linear membrane results are approached, and
for increasing"& the nonlinear effects cause a radical
variation in the stress. For very high ¥ the flat disk
results again are approached.

Figures 33 through 40 are plots of the magnitude of
the maximum bending stresses. The bending stresses were

computed from the relations

S _ + 6 Mee
f‘f‘E = - {‘Z
+ b NiQQ

The non-dimensional forms plotted in the figures, are

G;.:— = t w‘f'e = G_f'f'B
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66q ‘Dw" b F., N

where we have introduced

Po T v = "f’ T MMATERIAL  JoLrOoweE Dens T

For >\- 0.05% , the shell is nearly flat, and practically
no bending stress is generated, and no nonlinear effect is
seen. For A=1.0 , the shell is still relatively flat so
that very little nonlinear effect is seen until X‘ becomes
very large and the disk is effectively flattened out. The
bending stress shown for ¥ =120 would be essentially the
residual bending stress required to flatten the shell and
would show almost no variation for further increases in

'w . The parameter 'f could also be lowered considerably
before significant variation in the bending stress is
seen. When N is increased to 3 and above the nonlinear
effects appear for relatively small values of f . The
effect of increasing ¥ is to decrease the bending stresses.
For high ¥ the residual bending stress becomes small

for the higher values of )\ as the membrane effects become
predominant. The characteristic initial increase in

bending stress with increasing A up to a point, and then
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decreasing bending stress with increasing A is clearly
evident.

Figures 41 through 43 present the results of the
nonlinear theory for the bending slope. We have not
included the case Az 0.088since the results for the bending

7 and the single precision

slope are on the order of 10
accuracy is open to question. For the case Az ). O ye
have used a scale factor of 102 in order to maintain a
uniformity in the figures. Further, note that we have

employed the nondimensionalization

./ A WEL ‘)
W A X fw‘b'.e

which can be written

w's w2 (Z)

N

A particularly interesting feature occurs for large >\
when Ly is large. Note when 2120 with X=3.0 or
7. 0 the slope of the deflection curve is nearly

linear. 1In this situation the disk has practically
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flattened out and the bending slope has become the negative
of the original shell slope. This effect is not nearly

as predominant for smaller X . This implies Wy is
small and both h small and t large would reduce the tendency
to flatten out.

The result of primary interest from these computations
is the strong nonlinear behavior of the solutions for
increasing ¥ r particularly when )\ is not very small.

The substantial variation of the solutions with changing
by suggests that considerable care should be exercised if
anything but the nonlinear theory is to be employed for the

computation of the equilibrium configuration.

5.11 Conclusions Regarding the Appropriate Theory for
Computation of the Equilibrium State

As will be seen in Chapter 6, the equations of motion
of the spinning shallow spherical shell for free vibration
about the equilibrium configuration depend strongly on
the direct stresses and displacements which exist in the
equilibrium state. For this reason particular care should
be exercised in choosing the appropriate theory for the
analysis of the steadily spinning shell.

By referring to Figures 20 through 43 and the preceed-
ing analyses it is seen that for large A a membrane theory
is very nearly exact except for narrow regions near the

boundaries where bending is important. The width of these
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regions decreases as A increases.

For smaller values of A , bending becomes important

and é continuous transition to the flat plate results
()\—-Q) requires that it be considered.

Small values of the inertia loading parameter ¥
give rise to negligible nonlinear effects but these effects
become increasingly more important as ¥ is increased.

The effect of increasing"v is more predominant when )\ is
large.

It is concluded that any general purpose vibration
analysis should be based on the nonlinear theory which
includes bending effects. The use of a membrane theory,
as employed by Johnson [8], is not appropriate, particularly
for small %\ . In addition, the effect of bending in the
edge zones on the vibration characteristics should be
examined in the membrane case. The use of a linear theory
may well be adequate for most practical applications but
its use would not substantially simplify the vibration

analysis.

~154-




CHAPTER 6

THE EQUATIONS OF MOTION FOR THE FREE

VIBRATIONS OF A SPINNING SHALLOW SPHERICAIL SHELL
6.1 Introduction

The study of the transverse vibrations of a spinning
shallow spherical shell presents two interesting features
not found in analyses of non-spinning shells. The first,
and most significant, variation introduced by the presence
of spin is the generation of a pre-stressed equilibrium
configuration about which the wvibrations occur. This
configuration has been studied in detail in Chapter 5. The
second new feature which arises is the presence of a
coriolis coupling between the three deflection components.
These two additional considerations combine to produce
a mathematical problem which is different and considerably
more complex than the corresponding problem for the
stationary shell. It is the purpose of this chapter to
fully formulate the problem for numerical computation by
an established technique. The available computation
facility has proved to be inadequate to handle a problem of
this.size so that no numerical results have been obtained.

Efforts are under way to pursue the matter further at another
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facility.
6.2 Basic Equations——Meridional; Tangential, and Normall
Deflections
The differential equations which govern the small
vibrations of a spinning shallow spherical shell about its
equilibrium configuration were given in Egs. (2.5.9),
(2.5.10), and (2.5.11) for the case when the deflections
are resolved in the meridional, tangential, and normal
directions relative to the undeformed shell. They are
repeated here for convenience with the now unstarred
guantities understood to signify perturbation quantities
and the quantities subscripted with "0" understood to

represent equilibrium values:

Xy AYA
_Of(rq-r) N\ +_a\ere -_mr\u -G ~(U+ )‘*31

(6.2.1)

20+ T 1 1 el ) -]
(6.2.2)
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— It - F_o—(f‘c; WS, + S u},.)

t

l
o (¥ Te, g + W, T, ) + (S + )

C‘)ld

!
,.?:
\_u} 'ZuJ(}-——-(u+u3- )u.)l 2

(6.2.3)

In addition to the equations for dynamic equilibrium we

must include the mid-surface strain-displacement relations

for the perturbation quantities, here assumed small:

S
ér"'—u(!"‘?*‘u}oru}'n
(6.2.4)
- .':{. ("-9 Q
ée - + —2 + =
(6.2.5)
_ Ye R Do Jp
(6.2.6)

To complete the specification of the problem we state the

boundary conditions for a shell of outer radius b with a

fully clamped hub of radius a:
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U = o
W= o
u}?= o
(6.2.7)
f=b: S, > ©
Tre = ©
- A -
-y 2 7L -
Kizenor s CoND: %Vza)--l- Lr:—"a_f_‘(" u"ée) =0 (6.2.8)

For the free vibration problem at hand we make use of

the results of investigations of stationary shells to assume

the following solution forms:

M(f',e,{) = U(r) €os (ve + pt)
v(r,gt) = Vir) sin(ve+pl)
wWr e ) =W(r) cos(vio+pt) (6.2.9)

With this form for the displacements the strains are given

by
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oo™ (V,. - :,,—/- - - nuy W )%nn(wewp'l)
(6.2.10)

By utilizing the stress strain relations

Se = fvﬂ[ér "‘V)ée}

Q"e:-’-_EFz_léé +v’€r]

Te= & ¥ro (6.2.11)
we find that the stresses can be written

Sy = Sr cos(ne+t)

S, = 3g con(ne+pt)

Too = Srg"°'"(~"9+ﬁ‘l) (6.2.12)

where
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The equations of motion can be written

o_fF(rSf) - SQ + v Sf@ = -mf‘“PZU +Zw_P\/+(U+%P)w1]

(6.2.14)

c—ji,(rSre)- S, +Spe = - wr| PV +qu1D(U+V‘Tz/_")+u3‘V]

(6.2.15)
) 1d
—{L4V\/ - rdp("'u}o,.sp + rQr,,-o Wr)
K !
+¥ (% Te W - "‘“}Orgr‘J +3(S,+S.)
— r r
= m\_—pzw-r'zu)p\/—g- +(U+W—¢-)wz—,2‘] (6.2.16)
where
2
2 _ d° 1 d ke
"~ 3R *7rar - =

By using Egs. (6.2.13), Egs. (6.2.14), (6.2.15), and (6.2.16)
can be written
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ru.. + rd, W+ U4 “(_'C"'V‘)Vr

+{(H~V’)'é +(1-v) u)ar-i- r‘a_trr]w
L T 0 - Y (£ @, ] W

N LR u v ()4 Ew] -

(6.2.17)

T Ver 2Py, 4 2y - nlitd vy, a0 U

(e 0 s )]y

T
N mb-; Jw § + ¥y +1(£)(U+W£_‘>? ~

5 Ly (6.2.18)
z L*w -v 5 (rew, 3, + ro, W)

+'r'7(-?z¢e°“/“ “ "}5(- Sre) * 'lé( S, + Se)

= muJ'L‘.(é)-lw_#z(%)vé *(U*W—%)’é‘] (6.2.19)

It proves convenient to cast Egs. (6.2.17), (6.2.18)

| and (6.2.19) in non-dimensional form by introducing

X%

U~ U, u(yx)

V2V, u(x)

W= W, o3 (x) (6.2.20)
Uy~ Vo = W,(R)
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Further, from Chapter 5, Egs. (5.9.11), (5.9.12), and

(5.9.13) we have in the equilibrium configuration

Nep . (‘5+lele1 $ix)

Seo ¥ n X
. (R+V)pwiR®
32‘&() E( ) -3?—) (6.
¥
Se, = -EiL)E—u-J—E e(3 )\S( 3+3+w}
- (=.~.+v')puo - ( ) h(x) ..
R du K (3+w)pwzl? N (
T e i
. (R+W)putRt (6.
E{ 3 ) °

With the definition

¢ - (3+v’)puo7~Q7“_‘ (2+V) wi WwitRt

Et c
(6.
we write
. = ‘(‘E( ) -—’%—)
(6.
Gae = ¥ (%)'Z h(x) .
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),
éd‘“ X‘%(x)

o

(6.2.27)

By introducing Egs. (6.2.20) into Egs. (6.2.13) we find

that the stresses in terms of the displacements can be

written
gr=f-%’l_\%/°§ X +( )"8' "'V)( +“}+n%)i
RO IIIE T ST

= V’_E._ wd _ (R w (6.2.28)
Sro' 1- io' X T X n(b"'- “}°x) ¥
With Eg. (6.2.27) we can then obtain

gr__’—% W°iu + o+ Wy (x)dy +V‘(x +w 4 mj)?

SezT—'E'Fl —\%"j% + W+ "-‘T'{-} sviu s+ K’g(x)q},zr

LY E Mo v _ wnd (-
Sre' T r-vt R KOX -x T X "‘W&O‘) X (6.2.29)
Equations (6.2.29) can then be written in the convenient
form

S . = Wo

¢ T 1-v:E e Br

q . £ W

o TT-vr @ e

Q . LY E W

te - T 1-vt p re
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where S, ¢ Sg r S(.e are defined by the bracketed
terms in Egs. (6.2.29):

h
"

r T Uy + 3+ Ag(x) rv(g+weny)

——

Sg ¥ +u3~+"'~§§' +v'(ux+ W+ 5’3&)«},()

srezu:}'-%(z.— V‘%""‘Kiﬁ(")%}

By utilizing

(6.2.30)

the relations of Egs. (6.2.20) through (6.2.30)

we obtain the non-dimensional equations of motion

XUy, + ¥ gl S +Uy + w(gw)u; +{(ev)x +(‘-V’)b’3()()

= O

+ 53¢ X'( b) N""(f)zju +‘Z('£)U'+ Xu&f

(6.2.31)
< : < b 4 2

- xlz'__ﬂ/') ca(x) u).x . “(';’V') %

ol (e + 121,00 + %3&)}{«&
)? }{: +(E) o +-c(:g')(u+xu>)f

X x 5"{(‘,: wly?(")sr + $(x) u}x]
v B
\

= %— (Z)w +2(E) &) o+ (E )y(u+xu>)? (6.2.33)

(6.2.32)
"‘) WS - ()Spe | N
'l( w) {X)Sce | + Tha (Sr“se)
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The corresponding non~dimensional boundary conditions are

Y‘za/lg'. A =0
V0
W = O
WS, o
(6.2.34)
X=12

Se T Uy + W4 Fglx)ady +V'(% t W+ "‘—‘;") =0

ud
Sre* Ox"% = VL)% —"‘K"j(")? -~ o

M, = "D("‘Bzx + “—3") = o

< 4,(9)

LS I T -
5 Ly - vt % Jx o (6.2.35)

It is seen that the non-dimensional equations of motion

depend on four parameters:

,& - (3+V")W\UQ1QL
- E
4
E{b* y
M - se ® 2V20-v?) VA
V > Polasoen's T®avio
b A
' = ¢S T Svell SwALlowness PARAMETER

In addition, the boundary conditions require the specifica-
tion of the ratio of the hub radius to the disk radius,

%. It is observed that the dynamic problem requires the
specification of one additional parameter as compared to
the equilibrium problem. It can be seen by referring to
Egs. (6.2.31), (6.2.32), and (6.2.33) that the extra

parameter, % + scales the relative importance of the inertia
terms in Egs. (6.2.31) and (6.2.32) and the Coriolis and

centripetal acceleration terms in Eq. (6.2.33). Since the
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shallow shell theory used here implies the neglect of terms
of the order of (%)2 it is concluded that terms of
this order in the equations of motion can also be dropped,
provided that only the transverse motions are of interest.
This is in agreement with the results of Reissner [22]
regarding the neglect of longitudinal inertia for primarily
transverse vibrations of shallow shells and extends the
conclusion to include the coriolis and centripetal coupling
terms in the equation for transverse motion. As shown by
Reissner, if advantage is taken of the neglect of these
higher order terms the governing equations can be
simplified by the introduction of a stress function which
identically satisfies Egs. (6.2.1) and (6.2.2) in the

case when the right hand sides are zero. The equation
satisfied by the stress function is found by employing a

suitable compatibility equation.

6.3 Basic Equations--Radial, Tangential, and Axial
Deflections
For some purposes it may prove more convenient to have
the governing equations resolved in the radial, tangential,
and axial directions as was done by Johnson [8] in the mem-
brane case. The equations for this case were originally
given by Egs. (2.6.15), (2.6.16), and (2.6.19) and are

repeated here with the stars and bars suppressed
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2. T s .
,D,.((‘G}) -Gy + —ré m(‘\.u. -TwW "‘""’}K

)
(6.3.1)
= L\ . .
e (rhe) * Se +Tre = m(‘\_U‘ tTwu - uufl
(6.3.2)
D L2 £
T VIR - rari"(" =3 +“}°r)q-r‘ + f‘q;o,,a.’_.(
CE r ) .
'("391(——‘?- +Wp ) Trg * —;G‘eou}er-_-mu) (6.3.3)

The corresponding strain-displacement relations for the small

perturbation quantities are

r r r r
(6.3.4)
g (¥
ée ~ '77 + ~
(6.3.5)
u Vv Dy, S Sy
-~ =86 - o g 2]
L A
(6.3.6)
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The boundary conditions for the case of a fully clamped hub
of radius a and a free outer edge will be given by Egs.
(6.2.7) and (6.2.8).

By utilizing the wave type solutions given by Egs.

(6.2.9) the strain displacement relations can be written

€Uy + B W,o- ZW,) cos(ne+p?t)
(6.3.7)

Y
r

+
3
sl

) Cos(wvn® +-,011)

dh
L
r—~

(6.3.8)

. y Vv w W
L. P —(\/,, - V\_r_ - L n_é_ _nu)ar?‘. )gm(n9+¢z‘)

(6.3.9)

The stress-strain relations can then be employed to yield

S, = 3, con(ne +pf)

Ss = Se cos (me-i--—p-/)
(6.3.10)

Tee = Sre =in (ne +ﬂ'[)

where
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i .
Sp 7o | Up + W, EW e v(F e Df

E iu +"Lr\—/ *V'(Ur*“}arM -E"Wr)]

Se *1ovr |7

- U w w/ (6.3.11)
Sto2 G (Ve F g - ¥

In terms of the assumed form of solution the equations

of motion can be written

é?;(yﬂgf) '<Sg +V1S}g = -VV\Pl(fFWFu})LJ-+'ZuO1DV{]
(6.3.12)

St (vSes) = nSo + See = —mrx(ph IV +2wp U]

(6.3.13)
D 4 2 d r
P A S, W (-5 43 ) Sy o
re V8, r 'R %) >tg 1 (6.3.14)
where
Tt rdr  pu

The equations of motion in terms of displacements become
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U, +f(u}ar _r/R) Wpp + U, + n(_a:\’)\/r +[(:-w[u)5r-r/g)+r(u}or-%)r7%
e 2] Y - )y “14"—”(%(--8%
(1-v) wmuwlr £
Y E ; MEFE 1(w)V( (6.3.15)

(-v) Vi = 240y o 20V, - 22t )W, - 0

w
(e )Y - U] (), +(Wo- )T
+ (l—v:?kuazr}{:,+(£§fj\/-+ ?.(35)11[71'

_1;2__ 1-4”/'7‘,-%”.?(‘("5 * “}ar) Sr * roy, W',.{
+£WGOV‘/‘ %(‘é +“}"r> g = m "‘JZ({%)ZV\/

where S, and Sre are defined by Egs. (6.3.11). We
obtain non-dimensional equations in the same way as in
Section 6.2 by employing Egs. (6.2.20) through (6.2.27)
together with the appropriate non-dimensional form of the

stress—-displacement relations for this case:

S 7o ] v+ Ltg0 -¥IW, + (¥ +22)f

Se = ,_sz V'%/o} + ﬂ)?u: + VM(ux +IX‘§[X) "X]“);)(

_ \=Vv E Wo ; A i}
Sre TR SR E‘U;( ) n_x' -% +w[-x— b"?(x)]xf

By introducing the non-dimensional stresses E ‘Se

S(.e r defined by
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Se = Uy *h‘g(x)—"] Wy + (¥ + )

\_/

Sox ¥+ 2+ v {ue+ [ ¥g00 -x] w0y

Seo* Uy - "‘—x'-’-"‘ - —'-x’-# ni)(- K‘a(x)l %," (6.3.18)

we have for the dimensional stresses

S _ _E _V‘Z.o

v v & °r

J, B WMo
e " -vt p =

S _ 1=V _E WOS
re = T 1-vt R ré

The non-dimensional equations of motion for this case are
X uxy + Yi b“g()() - ’(] “);fx + ‘Jx + V_'_Q%I) {J;( +i(:-v~l&'3(¥)-x)+ Y(MJ(X)_X)X}L&X
-\_|+w7- (-] aaDe i) X'g(x)-x] 4

¢ 2 M(,?) ?44(—‘£)7~]u r2(E )u-{ (6.3.19)
S WPy 120 0 D] o) 4],

n('sV‘)____( T4 LY %-MLY(X'(X) X)x

+(¥'3(x)-¥)1%<} 3+v’ () ?[,.;.(-f)]u-rz(i)i

(6 3.20)

Lo - L &5 wsz%M fse + ke

¢ XA nz hix) W = =5 W) ¥ U;(x) Yjsm %_,W(ﬁ) W

(6.3.21)
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Equations (6.2.34) and (6.2.35) can also be employed to
specify the boundary conditions for this case except that
the appropriate definitions of S, and S,g must be
employed in Egs. (6.2.35). As in the case of meridional,
tangential, and normal deflections we f£ind that the
differential equations and boundary conditions depend on
five parameters. In addition, we once again note the
relative unimportance of the longitudinal inertia terms
in the membrane equilibrium equations.

There does not appear to be any particular advantage in
choosing one or the other of the two forms of the governing
equations of motion for purposes of numerical computations.
Although the form valid for radial, tangential, and axial
deflections appears to be slightly simpler in the bending
equation, a few manipulations can be employed to reduce the

other equations to a nearly equivalent form.

6.4 Numerical Computation of the Natural Frequencies and

Mode Shapes

The method which is proposed here for the numerical
computation of the natural frequencies and mode shapes is
an adaptation of a technique reported by Zarghamee and
Robinson [26]. Reduced to its basic concepts this method
is an extension of the technigque used in Chapters 4 and 5
to determine the natural frequencies for flat membrane

disks.
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Since the problem is linear we know that a solution
can be obtained aé the sum of a number of independent
- fundamental solutions. In particular, we choose to define
our fundamental solutions as those solutions which satisfy
the boundary conditions at one boundary but which have
unspecified values at the other boundary. By superposition
of these solutions with suitable arbitrary constants we
obtain a general solution whose gonstants can be determined
by the requirement that the remaining boundary conditions
be satisfied. This procedure leads to a set of homogeneous
algebraic equations for the undetermined constants which
can only be satisfied in a non-trivial way if the
determinant of the coefficients vanishes. The determinant
of the coefficients is formed from the fundamental solutions
and certain of their derivatives evaluated at the boundary
in guestion. Since these solutions depend on the undeter-
mined natural frequency we find that the problem reduces to
that of finding values of the natural frequency for which
the determinant of coefficients vanishes.

By referring to Chapters 4 and 5, which discuss the
vibrations of spinning membrane disks, it can be verified
that the fundamental solution was taken as that solution
"which satisfies the finiteness condition at the outer edge
of the disk. The vanishing of the deflection at the hub

leads to the condition that the fundamental solution itself
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vanish at the hub. It is seen that the determinant of
coefficients in this case reduces to a single element.

The disk vibration analyses led to exceptionally simple
eigenvalue problems since the boundary conditions were
simple and the form of the fundamental solutions was known
apriori.

The problem at hand is conceptually the same but
practically considerably more difficult. The boundary
conditions, of course, are more involved, requiring four
conditions at each boundary. However, the biggest complica-
tion is that the form of the fundamental solutions is not
known apriori, but rather, must be determined by numerical
integration of the equations of motion. The eigenvalue
equation requires the determination of the zeroes of the
determinant of coefficients whose elements are obtained
by numerically integrating the equations of motion.

In the present problem we will identify four linearly
independent fundamental solutions which satisfy initial
value problems defined as follows:

() oy ¥w) = o

ul%) =o U (k) = !

w(ak) o h(3h) =0
w(@/b) =° Wiy a/k) =0
W (3/b) =o By () =0 (6.4.1)

Yields fundamental solution «,(x), ¥, (x),6 & (x)
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) O(u, v, W) = ©

u(3/w) ~ © U, (3hk) ~ o
w@/k) =0 U (a/b) = |
ar(a/k) = o wk (alb) = ©
w,(sle) =0 W, (3/6) o 6.4.2)

Yields fundamental solution &, (x), U}(x), e, (x)

(=) Olu,u,w) =0

u(a/ke) * o ux(a/b) o)
(a/b) o v (8/k) o
w(3/b) o u%x(a/lo) ~ |
(6.4.3)
W (3/b) *© W, (a/b) = ©

Yields fundamental solution  #, (x), #} (x), &} (x)

4 Olu,v,w) o

u(a/e) ~o© U, (a/bk) *r o
v(@/k) o U (a/k) ~ o
w(s/k) o W, (a/k) ~o
u)x'(a/b\ o “*Sixx(a/b) - (6.4.4)

Yields fundamental solution UUylx), Uy , @, (X)
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In the above described initial value problems the linear
operator CDLLM\hU5)‘C> represents the differential equations
from Egs. (6.2.31), (6.2.32), and (6.2.33) or Egs. (6.3.19),
(6.3.20), and (6.3.21). This operator is also a function of
the unknown parameter containing the natural frequency of
vibration.

If we denote a fundamental solution vector by

UQ(X) .
_;(x) = U x) (~1,7%,34
ws (x)
(6.4.5)
then by superposition we obtain a general solution
4
¢ () = 2. A $; (x)
(=1
(6.4.6)
of the differential equations
O(d) ~ o
(6.4.7)

This general solution has four arbitrary constants to be
determined so that the free edge conditions are satisfied.
The free edge conditions were given by Egs. (6.2.35) for the
case of meridional, tangential, and normal deflections and
by these same equations with a suitable modification of

the definition of S¢ and Sre in the case of radial,
tangential, and axial deflections. In either case, the
boundary conditions can be written in operator form
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5(<_I>)x__l )

(6.4.8)
Where B is the linear operator appropriate to the particular
boundary conditions used. The boundary conditions at the

free edge are seen to lead to four simultaneous homogeneous

algebraic equations for the Ai

4

2, A, B(g), 6 o

¢ %
(6.4.9)

To emphasize the dependence of the fundamental solutions on

the fregquency parameter (Eg)'we write the algebraic equations

4
Z A B[@g ('ﬁ‘)l = e
e~ X~
(6.4.10)

These equations will have a non-trivial solution only if the
determinant of the coefficients of the A, vanishes. This
determinant is seen to be a function of the frequency

parameter (;ﬂ) so that we will have for a non-trivial solution

-177-



NEARE
(6.4.11)

where A(%E\ is the determinant of the coefficients of the
set of algebraic equations in Egs. (6.4.10).

The eigenvalue problem is seen to be that of finding
values of (fZJ) for which Eq. (6.4.11l) is satisfied. The
method of approach for solving the eigenvalue equation is
to evaluate the determinant for a sequence of values of
(f&ﬂ until a sign change in.A@Z:is noted. At this point
a suitable iteration scheme is employed to obtain an
accurate estimate of the eigenvalue. This scheme is the
same as the one used in the disk vibration problems but
is complicated by the fact that each evaluation of the
determinant requires four numerical integrations of the
governing differential equations.

Since we are dealing here with shallow shells we do not
anticipate the requirement that certain fundamental
solutions be suppressed to prevent unbounded growth as
discussed by Zarghamee and Robinson. However, as these
authors also point out, this feature may have to be available
if extremely thin shells are to be satisfactorily treated,
and even this capability may be insufficient if the limit-
ing case of a true membrane shell is approached.
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We currently have available the sub-programs required
for the construction of a digital computer program to carry
out the above described computations. They include a program
to compute and tabulate the equilibrium stress and dis-
placement distribution, a numerical integration scheme for
determining the fundamental solutions for specified value
of (ﬁé;) , a determinant evaluation procedure for obtaining
A(f%b) , and an iteration procedure for obtaining the zeroes
of ts(fZQS . In addition, these sub-programs could be used
to compute the mode shapes for a given frequency if required.

We have found the available IBM 1620 Computer Facility
to be too limited to handle problems of this size. While
most of the sub-programs have been checked out on this
facility no results have been obtained for the complete
problem. It is hoped that within the near future these
computations can be completed at a larger computation

facility.
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Figure 1. Geometry of the Spinning Shallow Spherical Shell,
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Figure 2. Coordinate System in which Displacements are
Measured in the Meridional, Tangential, and Normal
Directions.
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Figure 3. Coordinate System in which Displacements are
Measured Radially, Tangentially, and Axially.
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Figure 4. Geometry of the Inertia Load.
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Figure 5., Hub Configurations
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Figure 6. Configuration of Disk with Fully Clamped Hub.
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Figure g. Variation of the Frequency Parametex. uz, as a
Function of the Hub to Disk Radius Ratio, ¢, for Various
Values of the Annulus Radius Ratio, §, for the Symmetric
Vibration Case, s8=0, and for the Cases of Zero and One
Nodal Circles, n=0 and 1. .
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Figure 10. Variation of the Frequency Parameter, u2, as a
Function of the Hub to Disk Radius Ratio, e, for Various
Values of the Annulus Radius Ratio, §, for the Symmetric
Vibration Case, s8=0 and for the Case of Three Nodal Circles,
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Figure 11. Variation of the Frequency Parameter, uz as a
Function of the Hub of Disk Radius Ratio, ¢, for Various
Values of the Annulus Radius Ratio, §, for the Case of One
Nodal Diameter, s=1, and for the cases of Zero and One
Nodal Circles, n=0 and 1.
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Figurg 12. Variation of the Frequency Parameter, uz, as a
Function of the Hub to Disk Radius Ratio, e, for Various
Values of the Annulus Radius Ratio, 6, for the Case of

One Nodal Diameter, s=1, and for the Case of Two Nodal
Circles, n=2.
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Figure 13. Variation of the Frequency Parameter, uz, as

a Function of the Hub to Disk Radius Ratio, e, for Various
Values of the Annulus Radius Ratio, §, for the Case of One
Nodal Diameter, s=1, and for the Case of Three Nodal Circles,
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Figure 14. Variation of the Frequency Parameter, u2, as a
Function of the Hub to Disk Radius Ratio, e, for Various
Values of the Annulus Radius Ratio, §, for the Case of

Two Nodal Diameters, s=2, and for the Cases of Zero of One
Nodal Circles, n=0 and 1. ) .
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Figure 15. Variation of the Frequency Parameter, u2, as a
Function of the Hub to Disk Radius Ratio, e, for Various
Values of the Annulus Radius Ratio, &, for the Case of
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Figure 21. Tangential Direct Stress Resultant for Freely
Spinning Shell.  Linear Theory with )» =0.20.
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Figure 22. Radial Bending Stress Resultant for Freely
Spinning Shell. Linear Theory with })) =0.20.

- 205 -




Bee* = Boe / (3+vV ) 9W?p?

MAGNITUDE OF NON DIMENSIONAL BENDING STRESS

0.27T

_r
X=y

Figure 23. Tangential Bending Stress Resultant for Freely
Spinning Shell. Linear Theory with Y =0.20.

- 206 -




(3+y) 8 wR?
EViz(i-vT)

=w/

W*

NON-DIMENSIONAL NORMAL DEFLECTION

2
x.10

141

Figure 24.

Normal Deflection for Freely Spinning Shell.

Linear Theory with yy =0.20.

- 207 -



,A = 0,0580 -g-- 0.125
v = 0,20
Non-Linear
(] o O Linear

1.0 +
.
o 0.8 +
3
[~}
~
7 ¢ 120, 6.0, 1.0, 0.3, 0.01
I 0.6.L
| 7]
| ]
*x
Z
2 0.4
5 T
-y
[72}
g
5
=
2 o0.24

0.0 0.2 0.4 0.6 0.8 1.0

r
X b

Figure 25. Radial Direct Stress Resultant for Spinning
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with A =0.058 and V =0.20.
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Figure 28. Radial Direct Stress Resultant for Spinning Shell
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Figure 30. Tangential Direct Stress Resultant for Spinning
Shell with Fully Clamped Hub. Linear and Nonlinear Theory
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Figure 32. Tangential Direct Stress Resultant for Spinning
Shell with Fully Clamped Hub. Linear and Nonlinear Theory
with A =7.0 and ¥V =0.20.
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Figure 34. Radial Bending Stress Resultant for Spinning
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Shell

with A

with Fully Clamped Hub. Linear and Nonlinear Theory
=0.058 and ¥V =0.20.
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Figure 38. Tangential Bending Stress Resultant for Spinning
Shell with Fully Clamped Hub. Linear and Nonlinear Theory
with A =1.0 and V =0.20. ' ‘
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Figure 39. Tangential Bending Stress Resultant for Spinning
Shell with Fully Clamped Hub. Linear and Nonlinear Theory
with A =3.0 and V =0.20.
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Figure 40. Tangential Bending Stress Resultant for Spinning
Shell with Fully Clamped Hub. Linear and Nonlinear Theory
with A =7.0 and ¥ =0.20.
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Figure 41. Slope of Deflection Curve for Spinning Shell
with Fully Clamped Hub. Nonlinear Theory with A =1.0
and Y =0.20.
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and Y =0.20.
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